Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan-dan Wang is active.

Publication


Featured researches published by Dan-dan Wang.


Gene | 2017

MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway.

Hongyu Shen; Dan-dan Wang; Liangpeng Li; Sujin Yang; Xiu Chen; Siying Zhou; Shanliang Zhong; Jianhua Zhao; Jinhai Tang

BACKGROUND AND PURPOSE Acquisition of resistance to adriamycin (ADR) is one of the most important clinical obstacles in the treatment of breast cancer, but the molecular mechanisms underlying sensitivity to ADR remain elusive. In our previous study, through miRNA microarray and experiments, we have emphasized that miR-222 could promote the ADR-resistance in breast cancer cells. The aim of this study was to explore the possible mechanism by which miR-222 affects sensitivity to ADR. METHODS Through pathway enrichment analyses for miR-222, we found that PTEN/Akt/FOXO1 signaling pathway may be of importance. RT-qPCR analyses and western blot assays confirmed the relationship between miR-222 expression and target genes. Immunofluorescence further visually displayed the location of FOXO1. When blocking PTEN/Akt/FOXO1 signaling pathway, we demonstrated the effects of miR-222-mediated ADR resistance by MTT and apoptosis assays. RESULTS RT-qPCR and Western blot results showed that miR-222 expression was negatively correlated with FOXO1 expression. In addition, the subcellular translocation of FOXO1 due to the altered expression of miR-222 was observed from immunofluorescence. Moreover, upregulation of miR-222 expression in MCF-7/S cells is associated with decreased PTEN expression levels and increased phospho-Akt (p-Akt) expression. Conversely in MCF-7/ADR cells, inhibition of miR-222 resulted in increased PTEN expression and decreased p-Akt expression. For further validation, results of the present study also demonstrated that PTEN/Akt/FOXO1 signaling was responsible for the ADR-resistance of breast cancer cells since LY294002, an inhibitor of Akt signaling, partially increased the sensitivity of MCF-7/S cells to ADR. More importantly, we postulated that high expression of miR-222 is closely related to poor overall survival by TCGA database validation. CONCLUSIONS Taken together, these data elucidated that miR-222 mediated ADR-resistance of breast cancer cells partly through regulation of PTEN/Akt/FOXO1 signaling pathway and inhibition of miR-222 may improve the prognosis of breast cancer patients.


Oncotarget | 2016

MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes

Shanliang Zhong; Xiu Chen; Dan-dan Wang; Xiaohui Zhang; Hongyu Shen; Sujin Yang; Mengmeng Lv; Jinhai Tang; Jianhua Zhao

Exosomes have been shown to transmit drug resistance through delivering miRNAs. We aimed to explore their roles in breast cancer. Three resistant sublines were established by exposing parental MDA-MB-231 cell line to docetaxel, epirubicin and vinorelbine, respectively. Preneoadjuvant chemotherapy biopsies and paired surgically-resected specimens embedded in paraffin from 23 breast cancer patients were collected. MiRNA expression profiles of the cell lines and their exosomes were evaluated using microarray. The result showed that most miRNAs in exosomes had a lower expression level than that in cells, however, some miRNAs expressed higher in exosomes than in cells, suggesting a number of miRNAs is concentrated in exosomes. Among the dysregulated miRNAs, 22 miRNAs were consistently up-regulated in exosomes and their cells of origin. We further found that 12 of the 22 miRNAs were significantly up-regulated after preneoadjuvant chemotherapy. Further study of the role of these 12 miRNAs in acquisition of drug resistance is needed to clarify their contribution to chemoresistance.


Gene | 2016

MicroRNA-29a contributes to drug-resistance of breast cancer cells to adriamycin through PTEN/AKT/GSK3β signaling pathway.

Hongyu Shen; Liangpeng Li; Sujin Yang; Dan-dan Wang; Shanliang Zhong; Jianhua Zhao; Jinhai Tang

PURPOSE Acquisition of resistance to adriamycin (ADR) during the treatment of breast cancer is still a major clinical obstacle. MicroRNAs (miRNAs) are a class of short noncoding RNAs which associate with cancer chemoresistance through regulating gene expression by targeting mRNAs. Our previous microarray found that miR-29a may strongly confer the ADR resistance of breast cancer cells. Here, we aim to explore the possible mechanism by which miR-29a affects sensitivity to ADR. METHODS ADR-resistant MCF-7 breast cancer cell subline (MCF-7/ADR) was successfully established in vitro through a stepwise increase of ADR concentrations in the culture based on parental MCF-7 cell lines (MCF-7/S). We used TargetScan (a wide use of target prediction algorithms) in conjunction with pathway enrichment analyses to predict the mRNAs that were most likely to involve in miR-29a-mediated drug resistance in cancers. We confirmed the effects of miR-29a-mediated ADR resistance through MTT and apoptosis assays, and further investigated the activities of two target genes, PTEN and GSK3β, by RT-qPCR analyses and western blot assays. RESULTS The expression level of miR-29a in MCF-7/ADR cells was remarkablely higher than in MCF-7/S cells. Further MTT and apoptosis assays revealed that transfection of miR-29a inhibitors into MCF-7/ADR cells resulted in prominent reduction of the drug resistance, in contrast, transfection of miR-29a mimics into MCF-7/S cells obviously increased their drug resistance. Through pathway enrichment analyses for miR-29a, we found that PTEN/AKT/GSK3β signaling pathway may be of importance. RT-qPCR and Western blot results showed that downregulation of miR-29a expression in MCF-7/ADR cells increased PTEN expression levels, resulting in decreased phospho-Akt (p-Akt) and phospho-GSK3β (p-GSK3β) expression. Conversely, upregulation of miR-29a expression in MCF-7/S cells is associated with decreasing PTEN expression and increasing p-Akt and p-GSK3β expression. CONCLUSIONS PTEN and GSK3β are targeted by miR-29a, and miR-29a may contribute to ADR resistance through inhibition of the PTEN/AKT/GSK3β pathway in breast cancer cells. Thus, miR-29a may be a potential target for the patients who acquired ADR-resistance during the treatment of breast cancer.


Tumor Biology | 2017

The miR-30 family: Versatile players in breast cancer:

Sujin Yang; Su-Yu Yang; Dan-dan Wang; Xiu Chen; Hongyu Shen; Xiaohui Zhang; Shanliang Zhong; Jinhai Tang; Jianhua Zhao

The microRNA family, miR-30, plays diverse roles in regulating key aspects of neoplastic transformation, metastasis, and clinical outcomes in different types of tumors. Accumulating evidence proves that miR-30 family is pivotal in the breast cancer development by controlling critical signaling pathways and relevant oncogenes. Here, we review the roles of miR-30 family members in the tumorigenesis, metastasis, and drug resistance of breast cancer, and their application to predict the prognosis of breast cancer patients. We think miR-30 family members would be promising biomarkers for breast cancer and may bring a novel insight in molecular targeted therapy of breast cancer.


Tumor Biology | 2017

MiR-138: A promising therapeutic target for cancer:

Huanhuan Sha; Dan-dan Wang; Dan Chen; Siwen Liu; Zhen Wang; Dali Yan; Shuchen Dong; Jifeng Feng

MicroRNAs are small noncoding RNAs which regulate gene expressions at post-transcriptional level by binding to the 3′-untranslated region of target messenger RNAs. Growing evidences highlight their pivotal roles in various biological processes of human cancers. Among them, miR-138, generating from two primary transcripts, pri-miR-138-1 and pri-miR-138-2, expresses aberrantly in different cancers and is extensively studied in cancer network. Importantly, studies have shown that miR-138 acts as a tumor suppressor by targeting many target genes, which are related to proliferation, apoptosis, invasion, and migration. Additionally, some researches also discover that miR-138 can sensitize tumors to chemotherapies. In this review, we summarize the expression of miR-138 on regulatory mechanisms and tumor biological processes, which will establish molecular basis on the usage of miR-138 in clinical applications in the future.


Gene | 2017

Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer

Sujin Yang; Dan-dan Wang; Jian Li; Hanzi Xu; Hongyu Shen; Xiu Chen; Siying Zhou; Shanliang Zhong; Jianhua Zhao; Jinhai Tang

Anthracycline/taxane-based chemotherapy regimens are usually used as neoadjuvant chemotherapies to decrease tumour size and prevent metastasis of advanced breast cancer. However, patients have a high risk of developing chemo-resistance during treatment through still unknown mechanisms. Glutathione S-transferase P1 (GSTP1), which belongs to the family of phase II metabolic enzymes, has been reported to function in detoxifying several anti-cancer drugs by conjugating them with glutathione. Previous studies have identified GSTP1 as a predictor of prognosis and chemo-resistance in breast cancer patients, but the mechanisms governing GSTP1-dependent drug resistance are still unclear. We have found that GSTP1 expression is much higher in adriamycin-resistant cells and their corresponding exosomes. The role of GSTP1-containing exosomes in conferring drug resistance was analysed through cell apoptosis and immunofluorescence staining assays. Furthermore, we analysed 42 cases of paired breast cancer tissues collected before and after anthracycline/taxane-based neoadjuvant chemotherapy by immunohistochemistry. Higher GSTP1 expression was shown in the progressive disease (PD)/stable disease (SD) group than in the partial response (PR)/complete response (CR) group both in the samples collected before and after the chemotherapy treatment. Interestingly, GSTP1 partly re-localized from the cell nucleus to the cytoplasm upon treatment, and similar results were obtained for the exosomal marker Tumour susceptibility gene 101 protein (TSG101), which also increased in the cytoplasm after chemotherapy. After analysing the serum exosomes of 30 patients treated with anthracycline/taxane-based neoadjuvant chemotherapy, we discovered that the levels of GSTP1 in exosomes from patients in the PD/SD group were significantly higher than those in the PR/CR group. Here, for the first time, we investigated a novel role for GSTP1-containing exosomes and their capability to transfer drug resistance and evaluated their clinical use in predicting chemo-resistance.


Tumor Biology | 2016

MiRNAs-mediated cisplatin resistance in breast cancer

Xiu Chen; Peng Lu; Ying Wu; Dan-dan Wang; Siying Zhou; Sujin Yang; Hongyu Shen; Xiaohui Zhang; Jianhua Zhao; Jinhai Tang

Cisplatin is a widely used chemotherapeutic agent in breast cancer treatments with inevitable rapidly acquired resistance or intrinsically resistance. Enormous evidence points to the bioprocesses of resistant formation consisting of diverse miRNAs direct and indirect actions on relevant encoding genes. In this report, we overview detailed information on the miRNAs effect on cisplatin-induced resistance, including alterations in cell survival, modification of DNA damage response, changes in cellular uptake or efflux of the drug, altered DNA methylation, and perturbations in the miRNA biogenesis pathway. This will provide potential miRNA-targeted strategies for the treatment of breast cancer therapy and requires further clinical application.


Gene | 2016

miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27kip1 expression

Dan-dan Wang; Jian Li; Huanhuan Sha; Xiu Chen; Sujin Yang; Hongyu Shen; Shanliang Zhong; Jianhua Zhao; Jinhai Tang

Adriamycin (Adr) is a potent chemotherapeutic agent for chemotherapy of breast cancer patients. Despite impressive initial clinical responses, some developed drug resistance to Adr-based therapy and the mechanisms underlying breast cancer cells resistance to Adr are not well known. In our previous study, in vitro, we verified that miR-222 was upregulated in Adr-resistant breast cancer cells (MCF-7/Adr) compared with the sensitive parental cells (MCF-7/S). Here, miR-222 inhibitors or mimics were transfected into MCF-7 cell lines. RT-qPCR and western blot were used to detect the expression of p27(kip1). Immunofluorescence showed that miR-222 altered the subcellular location of p27(kip1) in nucleus. MTT was employed to verify the sensitivity of breast cancer cell lines to Adr. Flow cytometry showed the apoptosis and cell cycles of the cells after adding Adr. The results showed that downregulation of miR-222 in MCF-7/Adr increased sensitivity to Adr and Adr-induced apoptosis, and arrested the cells in G1 phase, accompanied by more expressions of p27(kip1), especially in nucleus. Furthermore, overexpressed miR-222 in MCF-7/S had the inverse results. Taken together, the results found that miR-222 induced Adr-resistance at least in part via suppressing p27(kip1) expression and altering its subcellular localization, and miR-222 inhibitors could reverse Adr-resistance of breast cancer cells. These results disclosed that the future holds much promise for the targeted therapeutic in the treatment of Adr-resistant breast cancer.


Gene | 2016

The role of miRNAs in drug resistance and prognosis of breast cancer formalin-fixed paraffin-embedded tissues.

Xiu Chen; Peng Lu; Dan-dan Wang; Sujin Yang; Ying Wu; Hongyu Shen; Shanliang Zhong; Jianhua Zhao; Jinhai Tang

PURPOSE Chemoresistance mediated by miRNAs in breast cancer have been already validated by previous studies in vitro, while little is known concerning the expression of them in vivo. The aim of this study was to investigate the role of miR-222, miR-29a, miR-34a, miR-130a, miR-90b, miR-200b, miR-452, miR-197, miR-138, miR-210, miR-423, miR-4298, miR-4644, miR-139, miR-1246, miR-1268a, miR-140, miR-149, miR-3178, miR-3613, miR-4258, miR-574, miR-671, miR-6780b, miR-7107, miR-744 and miR-7847 linked to drug resistance in breast cancer formalin-fixed paraffin-embedded tissues and the association of prognosis with miRNAs, thus providing effective targets in chemotherapy, as well as potential biomarkers for guiding effective treatments of breast cancer. METHODS The relationship between the expression of diverse miRNAs and drug resistance was detected by RT-qPCR using 55 breast cancer FFPE tissues containing 26 paired FFPE specimens. RESULTS MiR-222, miR-29a, miR-34a, miR-423, miR-140, miR-3178, miR-574, miR-6780b and miR-744 exhibited significantly higher expression levels in surgically-resected specimens compared with pre-neoadjuvant chemotherapy biopsies. Evidently high expression of miR-222, miR-29a, miR-140, miR-574, miR-6780b, miR-7107 and miR-744 were found in ineffective group comparing with effective group. Further investigations revealed the significant association between several miRNAs in breast cancer patients. CONCLUSIONS This study highlights the role of numerous miRNAs in prediction of therapeutic responses and suggests that specific miRNAs could serve as valuable sources for biomarker detections and optimal chemotherapeutic choices for breast cancer patients.


Gene | 2017

MiR-346 promotes the biological function of breast cancer cells by targeting SRCIN1 and reduces chemosensitivity to docetaxel

Fan Yang; Long-ji Luo; Lei Zhang; Dan-dan Wang; Sujin Yang; Li Ding; Jian Li; Dan Chen; Rong Ma; Jianzhong Wu; Jinhai Tang

MicroRNAs (miRNAs) are a class of highly conserved small noncoding RNAs that play pivotal roles at the post-transcriptional level in the biological function of various cancers, including breast cancer. In our study, miR-346 mimic, inhibitor, negative control or si-SRCIN1 were transfected into MCF-7 and MCF-7/Doc cells, respectively. Quantitative real time PCR (qRT-PCR) was used to measure miR-346 and SRCIN1 mRNA expressions and western blot was used to detect the expression of SRCIN1 in protein level. CCK-8 and colony formation were employed to verify cell viability and proliferation. Flow cytometry showed the apoptosis. Transwell was performed to detect migration and invasion. The luciferase reporter assay data showed the target correlation of miR-346 and SRCIN1. Firstly, we found that the expression of miR-346 was higher in breast cancer tissues than in their paired corresponding non-cancerous tissues and there was significant inversed correlation between miR-346 and SRCIN1. Overexpression of miR-346 promoted cell proliferation, colony formation, migration and invasion, and reduced apoptosis, sensitivity to Docetaxel (Doc). SRCIN1 was identified as a direct target of miR-346, whose silencing promoted cell proliferation and the IC50 of Doc. Moreover, SRCIN1 silencing reduced the effect of miR-346 down-expression. Taken together, miR-346 may function as an oncogenic miRNA and mediate chemosensitivity to docetaxel through targeting SRCIN1 in breast cancer, targeted modulation of miR-346 expression may became a potential strategy for the treatment.

Collaboration


Dive into the Dan-dan Wang's collaboration.

Top Co-Authors

Avatar

Jinhai Tang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Sujin Yang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Shanliang Zhong

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiu Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongyu Shen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Siying Zhou

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Jian Li

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Hanzi Xu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Huanhuan Sha

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge