Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Doherty is active.

Publication


Featured researches published by Dan Doherty.


Nature Genetics | 2007

Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome.

Heleen H. Arts; Dan Doherty; Sylvia E. C. van Beersum; Melissa A. Parisi; Stef J.F. Letteboer; Nicholas T. Gorden; Theo A. Peters; Tina Märker; Krysta Voesenek; Aileen Kartono; Hamit Özyürek; Federico M. Farin; Hester Y. Kroes; Uwe Wolfrum; Han G. Brunner; Frans P.M. Cremers; Ian A. Glass; N.V.A.M. Knoers; Ronald Roepman

Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-Løken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.


American Journal of Human Genetics | 2008

CC2D2A Is Mutated in joubert Syndrome and Interacts with the Ciliopathy-Associated Basal Body Protein CEP290

Nicholas T. Gorden; Heleen H. Arts; Melissa A. Parisi; Karlien L.M. Coene; Stef J.F. Letteboer; Sylvia E. C. van Beersum; Dorus A. Mans; Abigail Hikida; Melissa L. Eckert; Dana M. Knutzen; Abdulrahman Alswaid; Hamit Özyürek; Sel Dibooglu; Edgar A. Otto; Yangfan Liu; Erica E. Davis; Carolyn M. Hutter; Theo K. Bammler; Frederico M. Farin; Michael O. Dorschner; Meral Topçu; Elaine H. Zackai; Phillip Rosenthal; Kelly N. Owens; Nicholas Katsanis; John B. Vincent; Friedhelm Hildebrandt; Edwin W. Rubel; David W. Raible; Nine V.A.M. Knoers

Joubert syndrome and related disorders (JSRD) are primarily autosomal-recessive conditions characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation. Variable features include retinal dystrophy, cystic kidney disease, and liver fibrosis. JSRD are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle. By using homozygosity mapping in consanguineous families, we identify loss-of-function mutations in CC2D2A in JSRD patients with and without retinal, kidney, and liver disease. CC2D2A is expressed in all fetal and adult tissues tested. In ciliated cells, we observe localization of recombinant CC2D2A at the basal body and colocalization with CEP290, whose cognate gene is mutated in multiple hereditary ciliopathies. In addition, the proteins can physically interact in vitro, as shown by yeast two-hybrid and GST pull-down experiments. A nonsense mutation in the zebrafish CC2D2A ortholog (sentinel) results in pronephric cysts, a hallmark of ciliary dysfunction analogous to human cystic kidney disease. Knockdown of cep290 function in sentinel fish results in a synergistic pronephric cyst phenotype, revealing a genetic interaction between CC2D2A and CEP290 and implicating CC2D2A in cilium/basal body function. These observations extend the genetic spectrum of JSRD and provide a model system for studying extragenic modifiers in JSRD and other ciliopathies.


European Journal of Human Genetics | 2007

Joubert syndrome (and related disorders) (OMIM 213300)

Melissa A. Parisi; Dan Doherty; Phillip F. Chance; Ian A. Glass

Joubert syndrome (JS) and related disorders are characterized by the ‘molar tooth sign’ (cerebellar vermis hypoplasia and brainstem anomalies) on MRI, hypotonia, developmental delay, ataxia, irregular breathing pattern and abnormal eye movements. Combinations of additional features such as polydactyly, ocular coloboma, retinal dystrophy, renal disease, hepatic fibrosis, encephalocele, and other brain malformations define clinical sub-types. Recent identification of the NPHP1, AHI1, and CEP290 genes has started to reveal the molecular basis of JS, which may implicate the primary cilium in these disorders. Additional genes remain to be identified.


American Journal of Human Genetics | 2013

Defects in the IFT-B Component IFT172 Cause Jeune and Mainzer-Saldino Syndromes in Humans

Jan Halbritter; Albane A. Bizet; Miriam Schmidts; Jonathan D. Porath; Daniela A. Braun; Heon Yung Gee; Aideen McInerney-Leo; Pauline Krug; Emilie Filhol; Erica E. Davis; Rannar Airik; Peter G. Czarnecki; Anna Lehman; Peter Trnka; Patrick Nitschke; Christine Bole-Feysot; Markus Schueler; Bertrand Knebelmann; Stéphane Burtey; Attila J. Szabó; Kalman Tory; Paul Leo; Brooke Gardiner; Fiona McKenzie; Andreas Zankl; Matthew A. Brown; Jane Hartley; Eamonn R. Maher; Chunmei Li; Michel R. Leroux

Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopathies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, and Mainzer-Saldino syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses: candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 families. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement, consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD and MZSDS. Our findings link the group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.


Nature Genetics | 2012

CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium

Ji Eun Lee; Jennifer L. Silhavy; Maha S. Zaki; Jana Schroth; Sarah E. Marsh; Jesus Olvera; Francesco Brancati; Miriam Iannicelli; Koji Ikegami; Andrew M. Schlossman; Barry Merriman; Tania Attié-Bitach; Clare V. Logan; Ian A. Glass; Andrew Cluckey; Carrie M. Louie; Jeong Ho Lee; Hilary R. Raynes; Isabelle Rapin; Ignacio P. Castroviejo; Mitsutoshi Setou; Clara Barbot; Eugen Boltshauser; Stanley F. Nelson; Friedhelm Hildebrandt; Colin A. Johnson; Dan Doherty; Enza Maria Valente; Joseph G. Gleeson

Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.


Journal of Medical Genetics | 2005

AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome

Melissa A. Parisi; Dan Doherty; Melissa L. Eckert; Dennis W. W. Shaw; H. Ozyurek; S. Aysun; O. Giray; A. Al Swaid; S. Al Shahwan; N. Dohayan; E. Bakhsh; O. S. Indridason; William B. Dobyns; Craig L. Bennett; Phillip F. Chance; Ian A. Glass

Background: Joubert syndrome (JS) is an autosomal recessive disorder characterised by hypotonia, ataxia, mental retardation, altered respiratory pattern, abnormal eye movements, and a brain malformation known as the molar tooth sign (MTS) on cranial MRI. Four genetic loci have been mapped, with two genes identified (AHI1 and NPHP1). Methods: We screened a cohort of 117 JS subjects for AHI1 mutations by a combination of haplotype analysis and sequencing of the gene, and for the homozygous NPHP1 deletion by sequencing and marker analysis. Results: We identified a total of 15 novel AHI1 mutations in 13 families, including nonsense, missense, splice site, and insertion mutations, with some clustering in the WD40 domains. Eight families were consanguineous, but no single founder mutation was apparent. In addition to the MTS, retinal dystrophy was present in 11 of 12 informative families; however, no subjects exhibited variable features of JS such as polydactyly, encephalocele, colobomas, or liver fibrosis. In contrast to previous reports, we identified two families with affected siblings who developed renal disease consistent with nephronophthisis (NPH) in their 20s. In addition, two individuals with classic NPH were found to have homozygous NPHP1 deletions. Conclusions: Overall, 11% of subjects had AHI1 mutations, while ∼2% had the NPHP1 deletion, representing a total of less than 15% in a large JS cohort. Some preliminary genotype-phenotype correlations are possible, notably the association of renal impairment, specifically NPH, in those with NPHP1 deletions. Subjects with AHI1 mutations may be at risk of developing both retinal dystrophy and progressive kidney disease.


Cell Metabolism | 2014

Hypomorphism for RPGRIP1L, a Ciliary Gene Vicinal to the FTO Locus, Causes Increased Adiposity in Mice

George Stratigopoulos; Jayne F. Martin Carli; Diana R. O’Day; Liheng Wang; Charles A. LeDuc; Patricia Lanzano; Wendy K. Chung; Michael Rosenbaum; Dieter Egli; Dan Doherty; Rudolph L. Leibel

Common polymorphisms in the first intron of FTO are associated with increased body weight in adults. Previous studies have suggested that a CUX1-regulatory element within the implicated FTO region controls expression of FTO and the nearby ciliary gene, RPGRIP1L. Given the role of ciliary genes in energy homeostasis, we hypothesized that mice hypomorphic for Rpgrip1l would display increased adiposity. We find that Rpgrip1l⁺/⁻ mice are hyperphagic and fatter, and display diminished suppression of food intake in response to leptin administration. In the hypothalamus of Rpgrip1l⁺/⁻ mice, and in human fibroblasts with hypomorphic mutations in RPGRIP1L, the number of AcIII-positive cilia is diminished, accompanied by impaired convening of the leptin receptor to the vicinity of the cilium, and diminished pStat3 in response to leptin. These findings suggest that RPGRIP1L may be partly or exclusively responsible for the obesity susceptibility signal at the FTO locus.


American Journal of Human Genetics | 2009

Identification of Mutations in TRAPPC9, which Encodes the NIK- and IKK-β-Binding Protein, in Nonsyndromic Autosomal-Recessive Mental Retardation

Asif Mir; Liana Kaufman; Abdul Noor; M. Mahdi Motazacker; Talal Jamil; Matloob Azam; Kimia Kahrizi; Muhammad Rafiq; Rosanna Weksberg; Tanveer Nasr; Farooq Naeem; Andreas Tzschach; Andreas W. Kuss; Gisele E. Ishak; Dan Doherty; Hans-Hilger Ropers; A. James Barkovich; Hossein Najmabadi; Muhammad Ayub; John B. Vincent

Mental retardation/intellectual disability is a devastating neurodevelopmental disorder with serious impact on affected individuals and their families, as well as on health and social services. It occurs with a prevalence of approximately 2%, is an etiologically heterogeneous condition, and is frequently the result of genetic aberrations. Autosomal-recessive forms of nonsyndromic MR (NS-ARMR) are believed to be common, yet only five genes have been identified. We have used homozygosity mapping to search for the gene responsible for NS-ARMR in a large Pakistani pedigree. Using Affymetrix 5.0 single nucleotide polymorphism (SNP) microarrays, we identified a 3.2 Mb region on 8q24 with a continuous run of 606 homozygous SNPs shared among all affected members of the family. Additional genotype data from microsatellite markers verified this, allowing us to calculate a two-point LOD score of 5.18. Within this region, we identified a truncating homozygous mutation, R475X, in exon 7 of the gene TRAPPC9. In a second large NS-ARMR/ID family, previously linked to 8q24 in a study of Iranian families, we identified a 4 bp deletion within exon 14 of TRAPPC9, also segregating with the phenotype and truncating the protein. This gene encodes NIK- and IKK-beta-binding protein (NIBP), which is involved in the NF-kappaB signaling pathway and directly interacts with IKK-beta and MAP3K14. Brain magnetic resonance imaging of affected individuals indicates the presence of mild cerebral white matter hypoplasia. Microcephaly is present in some but not all affected individuals. Thus, to our knowledge, this is the sixth gene for NS-ARMR to be discovered.


American Journal of Human Genetics | 2012

Mutation in NSUN2, which Encodes an RNA Methyltransferase, Causes Autosomal-Recessive Intellectual Disability

M. A. Khan; Muhammad Rafiq; Abdul Noor; Shobbir Hussain; Joana V. Flores; Verena Rupp; Akshita K. Vincent; Roland Malli; Ghazanfar Ali; Falak Sher Khan; Gisele E. Ishak; Dan Doherty; Rosanna Weksberg; Muhammad Ayub; Christian Windpassinger; Shahnaz Ibrahim; Michaela Frye; Muhammad Ansar; John B. Vincent

Causes of autosomal-recessive intellectual disability (ID) have, until very recently, been under researched because of the high degree of genetic heterogeneity. However, now that genome-wide approaches can be applied to single multiplex consanguineous families, the identification of genes harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here, we have mapped a disease locus in a consanguineous Pakistani family affected by ID and distal myopathy. We genotyped family members on genome-wide SNP microarrays and used the data to determine a single 2.5 Mb homozygosity-by-descent (HBD) locus in region 5p15.32-p15.31; we identified the missense change c.2035G>A (p.Gly679Arg) at a conserved residue within NSUN2. This gene encodes a methyltransferase that catalyzes formation of 5-methylcytosine at C34 of tRNA-leu(CAA) and plays a role in spindle assembly during mitosis as well as chromosome segregation. In mouse brains, we show that NSUN2 localizes to the nucleolus of Purkinje cells in the cerebellum. The effects of the mutation were confirmed by the transfection of wild-type and mutant constructs into cells and subsequent immunohistochemistry. We show that mutation to arginine at this residue causes NSUN2 to fail to localize within the nucleolus. The ID combined with a unique profile of comorbid features presented here makes this an important genetic discovery, and the involvement of NSUN2 highlights the role of RNA methyltransferase in human neurocognitive development.


Journal of Medical Genetics | 2010

Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis)

Dan Doherty; Melissa A. Parisi; L. S. Finn; Meral Gunay-Aygun; M. Al-Mateen; D. Bates; Carol L. Clericuzio; H. Demir; Michael O. Dorschner; A.J. van Essen; William A. Gahl; Mattia Gentile; Nicholas T. Gorden; A. Hikida; Dana M. Knutzen; Hamit Özyürek; Ian G. Phelps; Phillip Rosenthal; Alain Verloes; H. Weigand; Phillip F. Chance; William B. Dobyns; Ian A. Glass

Objective To identify genetic causes of COACH syndrome Background COACH syndrome is a rare autosomal recessive disorder characterised by Cerebellar vermis hypoplasia, Oligophrenia (developmental delay/mental retardation), Ataxia, Coloboma, and Hepatic fibrosis. The vermis hypoplasia falls in a spectrum of mid-hindbrain malformation called the molar tooth sign (MTS), making COACH a Joubert syndrome related disorder (JSRD). Methods In a cohort of 251 families with JSRD, 26 subjects in 23 families met criteria for COACH syndrome, defined as JSRD plus clinically apparent liver disease. Diagnostic criteria for JSRD were clinical findings (intellectual impairment, hypotonia, ataxia) plus supportive brain imaging findings (MTS or cerebellar vermis hypoplasia). MKS3/TMEM67 was sequenced in all subjects for whom DNA was available. In COACH subjects without MKS3 mutations, CC2D2A, RPGRIP1L and CEP290 were also sequenced. Results 19/23 families (83%) with COACH syndrome carried MKS3 mutations, compared to 2/209 (1%) with JSRD but no liver disease. Two other families with COACH carried CC2D2A mutations, one family carried RPGRIP1L mutations, and one lacked mutations in MKS3, CC2D2A, RPGRIP1L and CEP290. Liver biopsies from three subjects, each with mutations in one of the three genes, revealed changes within the congenital hepatic fibrosis/ductal plate malformation spectrum. In JSRD with and without liver disease, MKS3 mutations account for 21/232 families (9%). Conclusions Mutations in MKS3 are responsible for the majority of COACH syndrome, with minor contributions from CC2D2A and RPGRIP1L; therefore, MKS3 should be the first gene tested in patients with JSRD plus liver disease and/or coloboma, followed by CC2D2A and RPGRIP1L.

Collaboration


Dive into the Dan Doherty's collaboration.

Top Co-Authors

Avatar

Ian G. Phelps

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ian A. Glass

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa A. Parisi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meral Gunay-Aygun

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William A. Gahl

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William B. Dobyns

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge