Dan E. Berkowitz
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dan E. Berkowitz.
Circulation | 2003
Dan E. Berkowitz; Ronald H. White; Dechun Li; Khalid M. Minhas; Amy Cernetich; Soonyul Kim; Sean Burke; Artin A. Shoukas; Daniel Nyhan; Hunter C. Champion; Joshua M. Hare
Background—Although abnormal l-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. l-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating l-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. Methods and Results—Inhibition of arginase with (S)-(2-boronoethyl)-l-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4±9.4% at 10−5 mol/L, P <0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-l-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P <0.05 and P <0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60±6% versus 39±6%, P <0.05). In addition, BEC restored depressed l-arginine (10−4 mol/L)–dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. Conclusions—These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular l-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.
Circulation Research | 2011
Asif K. Mustafa; Gautam Sikka; Sadia K. Gazi; Jochen Steppan; Sung M. Jung; Anil K. Bhunia; Viachaslau Barodka; Farah K. Gazi; Roxanne K. Barrow; Rui Wang; L. Mario Amzel; Dan E. Berkowitz; Solomon H. Snyder
Rationale: Nitric oxide, the classic endothelium-derived relaxing factor (EDRF), acts through cyclic GMP and calcium without notably affecting membrane potential. A major component of EDRF activity derives from hyperpolarization and is termed endothelium-derived hyperpolarizing factor (EDHF). Hydrogen sulfide (H2S) is a prominent EDRF, since mice lacking its biosynthetic enzyme, cystathionine &ggr;-lyase (CSE), display pronounced hypertension with deficient vasorelaxant responses to acetylcholine. Objective: The purpose of this study was to determine if H2S is a major physiological EDHF. Methods and Results: We now show that H2S is a major EDHF because in blood vessels of CSE-deleted mice, hyperpolarization is virtually abolished. H2S acts by covalently modifying (sulfhydrating) the ATP-sensitive potassium channel, as mutating the site of sulfhydration prevents H2S-elicited hyperpolarization. The endothelial intermediate conductance (IKCa) and small conductance (SKCa) potassium channels mediate in part the effects of H2S, as selective IKCa and SKCa channel inhibitors, charybdotoxin and apamin, inhibit glibenclamide-insensitive, H2S-induced vasorelaxation. Conclusions: H2S is a major EDHF that causes vascular endothelial and smooth muscle cell hyperpolarization and vasorelaxation by activating the ATP-sensitive, intermediate conductance and small conductance potassium channels through cysteine S-sulfhydration. Because EDHF activity is a principal determinant of vasorelaxation in numerous vascular beds, drugs influencing H2S biosynthesis offer therapeutic potential.
Circulation | 2002
Lili A. Barouch; Dan E. Berkowitz; Robert W. Harrison; Christopher P. O'Donnell; Joshua M. Hare
Background—Whether left ventricular hypertrophy (LVH) in obesity results from increased hemodynamic load or altered neurohormonal signaling remains controversial. Dysregulation of leptin, a neurohormone essential to energy homeostasis, is implicated in the pathogenesis of obesity. Because leptin has cardiovascular bioactivity, we hypothesized that disruption of leptin signaling mediates the development of obesity-associated LVH. Methods and Results—We measured left ventricular (LV) wall thickness and LV mass with echocardiography in mice lacking leptin (ob/ob, n=15) or functional receptor (db/db, n=10) and controls at 2, 4, and 6 months of age. None of the mice had LVH at 2 months. Progressive obesity developed in ob/ob and db/db mice. At 6 months, LVH occurred in ob/ob and db/db compared with controls. We observed corresponding myocyte hypertrophy by light microscopy. To separate the direct contribution of leptin deficiency from mechanical effects of obesity, we induced weight loss in 6- to 8-month-old ob/ob mice either by leptin infusion or caloric restriction. Mice in both groups lost similar weight compared with placebo-treated controls. Leptin infusion completely reversed the increase in wall thickness with partial resolution of myocyte hypertrophy, whereas calorie-restricted mice had no decrease in wall thickness and a lesser change in myocyte size. Conclusions—Together these data show that the effect of leptin on LV remodeling is not attributable to weight loss alone, indicating that leptin has antihypertrophic effects on the heart, either directly or through a leptin-regulated neurohumoral pathway. Disruption of leptin signaling may represent a novel mechanism in LVH and related cardiovascular disorders.
Circulation | 1999
Xiaowen L. Rudner; Dan E. Berkowitz; John V. Booth; Bonita L. Funk; Kelli L. Cozart; Elizabeth B. D'amico; Habib E. El-Moalem; Stella O. Page; Charlene D. Richardson; Bradford Winters; Leo Marucci; Debra A. Schwinn
Background—α1-adrenergic receptors (α1ARs) regulate blood pressure, regional vascular resistance, and venous capacitance; the exact subtype (α1a, α1b, α1 d) mediating these effects is unknown and varies with species studied. In order to understand mechanisms underlying cardiovascular responses to acute stress and chronic catecholamine exposure (as seen with aging), we tested two hypotheses: (1) human α1AR subtype expression differs with vascular bed, and (2) age influences human vascular α1AR subtype expression. Methods and Results—Five hundred vessels from 384 patients were examined for α1AR subtype distribution at mRNA and protein levels (RNase protection assays, ligand binding, contraction assays). Overall vessel α1AR density is 16±2.3fmol/mg total protein. α1aAR predominates in arteries at mRNA (P<0.001) and protein (P<0.05) levels; all 3 subtypes are present in veins. Furthermore, α1AR mRNA subtype expression varies with vessel bed (α1a higher in splanchnic versus central arteries, P<0.05); competiti...
Circulation Research | 2008
Sungwoo Ryoo; Gaurav Gupta; Alexandre Benjo; Hyun Kyo Lim; Andre Camara; Gautam Sikka; Hyun Kyung Lim; Jayson Sohi; Lakshmi Santhanam; Kevin G. Soucy; Eric C. Tuday; Ezra Baraban; Monica Ilies; Gary Gerstenblith; Daniel Nyhan; Artin A. Shoukas; David W. Christianson; N J Alp; Hunter C. Champion; David Huso; Dan E. Berkowitz
Oxidized low-density lipoproteins increase arginase activity and reciprocally decrease endothelial NO in human aortic endothelial cells. Here, we demonstrate that vascular endothelial arginase activity is increased in atherogenic-prone apolipoprotein E–null (ApoE−/−) and wild-type mice fed a high cholesterol diet. In ApoE−/− mice, selective arginase II inhibition or deletion of the arginase II gene (Arg II−/− mice) prevents high-cholesterol diet–dependent decreases in vascular NO production, decreases endothelial reactive oxygen species production, restores endothelial function, and prevents oxidized low-density lipoprotein–dependent increases in vascular stiffness. Furthermore, arginase inhibition significantly decreases plaque burden. These data indicate that arginase II plays a critical role in the pathophysiology of cholesterol-mediated endothelial dysfunction and represents a novel target for therapy in atherosclerosis.
Circulation Research | 2003
Shakil A. Khan; Michel W. Skaf; Robert W. Harrison; Kwangho Lee; Khalid M. Minhas; Anil Kumar; Mike Fradley; Artin A. Shoukas; Dan E. Berkowitz; Joshua M. Hare
Abstract— The mechanisms by which nitric oxide (NO) influences myocardial Ca2+ cycling remain controversial. Because NO synthases (NOS) have specific spatial localization in cardiac myocytes, we hypothesized that neuronal NOS (NOS1) found in cardiac sarcoplasmic reticulum (SR) preferentially regulates SR Ca2+ release and reuptake resulting in potentiation of the cardiac force-frequency response (FFR). Transesophageal pacing (660 to 840 bpm) in intact C57Bl/6 mice (WT) stimulated both contractility (dP/dtmax normalized to end-diastolic volume; dP/dt-EDV) by 51±5% (P <0.001) and lusitropy (tau; &tgr;) by 20.3±2.0% (P <0.05). These responses were markedly attenuated in mice lacking NOS1 (NOS1−/−) (15±2% increase in dP/dt-EDV; P <0.001 versus WT; and no change in &tgr;; P <0.01 versus WT). Isolated myocytes from NOS1−/− (≈2 months of age) also exhibited suppressed frequency-dependent sarcomere shortening and Ca2+ transients ([Ca2+]i) compared with WT. SR Ca2+ stores, a primary determinant of the FFR, increased at higher frequencies in WT (caffeine-induced [Ca2+]i at 4 Hz increased 107±23% above 1 Hz response) but not in NOS1−/− (13±26%; P <0.01 versus WT). In contrast, mice lacking NOS3 (NOS3−/−) had preserved FFR in vivo, as well as in isolated myocytes with parallel increases in sarcomere shortening, [Ca2+]i, and SR Ca2+ stores. NOS1−/− had increased SR Ca2+ ATPase and decreased phospholamban protein abundance, suggesting compensatory increases in SR reuptake mechanisms. Together these data demonstrate that NOS1 selectively regulates the cardiac FFR via influences over SR Ca2+ cycling. Thus, there is NOS isoform-specific regulation of different facets of rate-dependent excitation-contraction coupling; inactivation of NOS1 has the potential to contribute to the pathophysiology of states characterized by diminished frequency-dependent inotropic responses.
Journal of Applied Physiology | 2009
Jae Hyung Kim; Lukasz Bugaj; Young Jun Oh; Trinity J. Bivalacqua; Sungwoo Ryoo; Kevin G. Soucy; Lakshmi Santhanam; Alanah Webb; Andre Camara; Gautam Sikka; Daniel Nyhan; Artin A. Shoukas; Monica Ilies; David W. Christianson; Hunter C. Champion; Dan E. Berkowitz
There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2(-)) production than young. Acute inhibition of both NOS, with N(G)-nitro-l-arginine methyl ester, and arginase, with 2S-amino- 6-boronohexanoic acid (ABH), significantly reduced O2(-) production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692-702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2(-) production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness.
Hypertension | 2006
Anthony R. White; Sungwoo Ryoo; Dechun Li; Hunter C. Champion; Jochen Steppan; Danming Wang; Daniel Nyhan; Artin A. Shoukas; Joshua M. Hare; Dan E. Berkowitz
Arginase, expressed in endothelial cells and upregulated in aging blood vessels, competes with NO synthase (NOS) for l-arginine, thus modulating vasoreactivity and attenuating NO signaling. Moreover, arginase inhibition restores endothelial NOS signaling and l-arginine responsiveness in old rat aorta. The arginase isoform responsible for modulating NOS, however, remains unknown. Because isoform-specific arginase inhibitors are unavailable, we used an antisense (AS) oligonucleotide approach to knockdown arginase I (Arg I). Western blot and quantitative PCR confirmed that Arg I is the predominant isoform expressed in endothelialized aortic rings and is upregulated in old rats compared with young. Aortic rings from 22-month-old rats were incubated for 24 hours with sense (S), AS oligonucleotides, or medium alone (C). Immunohistochemistry, immunoblotting, and enzyme assay confirmed a significant knockdown of Arg I protein and arginase activity in AS but not S or C rings. Conversely, calcium-dependent NOS activity and vascular metabolites of NO was increased in AS versus S or C rings. Acetylcholine (endothelial-dependent) vasorelaxant responses were enhanced in AS versus S or C treated rings. In addition, 1H-oxadiazolo quinoxalin-1-one (10 &mgr;mol/L), a soluble guanylyl cyclase inhibitor, increased the phenylephrine response in AS compared with S and C rings suggesting increased NO bioavailability. Finally, l-arginine (0.1 mmol/L)-induced relaxation was increased in AS versus C rings. These data support our hypothesis that Arg I plays a critical role in the pathobiology of age-related endothelial dysfunction. AS oligonucleotides may, therefore, represent a novel therapeutic strategy against age-related vascular endothelial dysfunction.
Circulation Research | 2007
Lakshmi Santhanam; Hyun Kyo Lim; Hyun Kyoung Lim; Victor Miriel; Tashalee Brown; Meet Patel; Sarit Balanson; Sungwoo Ryoo; Mirinda Anderson; Kaikobad Irani; Firdous A. Khanday; Luigi Di Costanzo; Daniel Nyhan; Joshua M. Hare; David W. Christianson; Richard J. Rivers; Artin A. Shoukas; Dan E. Berkowitz
Endothelial function is impaired in aging because of a decrease in NO bioavailability. This may be, in part, attributable to increased arginase activity, which reciprocally regulates NO synthase (NOS) by competing for the common substrate, l-arginine. However, the high Km of arginase (>1 mmol/L) compared with NOS (2 to 20 &mgr;mol/L) seemingly makes direct competition for substrate unlikely. One of the mechanisms by which NO exerts its effects is by posttranslational modification through S-nitrosylation of protein cysteines. We tested the hypothesis that arginase1 activity is modulated by this mechanism, which serves to alter its substrate affinity, allowing competition with NOS for l-arginine. We demonstrate that arginase1 activity is altered by S-nitrosylation, both in vitro and ex vivo. Furthermore, using site-directed mutagenesis we demonstrate that 2 cysteine residues (C168 and C303) are able to undergo nitrosylation. S-Nitrosylation of C303 stabilizes the arginase1 trimer and reduces its Km value 6-fold. Finally, arginase1 nitrosylation is increased (and thus its Km decreased) in blood vessels from aging rats, likely contributing to impaired NO bioavailability and endothelial dysfunction. This is mediated by inducible NOS, which is expressed in the aging endothelium. These findings suggest that S-nitrosylated arginase1 can compete with NOS for l-arginine and contribute to endothelial dysfunction in the aging cardiovascular system.
European Journal of Pharmacology | 1995
Dan E. Berkowitz; Nancy A. Nardone; Richard M. Smiley; David T. Price; David K. Kreutter; Robert T. Fremeau; Debra A. Schwinn
The beta 3-adrenoceptor is a G protein-coupled receptor which mediates metabolic functions of the endogenous catecholamines epinephrine and norepinephrine. Questions exist regarding distribution of the beta 3-adrenoceptor in human tissue. In order to examine the distribution of beta 3-adrenoceptor mRNA in human tissues, we used sensitive and specific RNase protection assays without previous PCR amplification in an extensive list of human tissues. We confirm the presence of beta 3-adrenoceptor mRNA in human white fat from several locations, gall bladder, and small intestine, as well as extend the distribution of beta 3-adrenoceptor mRNA to previously uncharacterized human tissues such as stomach and prostate. The presence of beta 3-adrenoceptor mRNA in human white adipose tissue has important implications regarding possible use of beta 3-adrenoceptor selective agonists as anti-obesity agents, and the demonstration of beta 3-adrenoceptor mRNA in a number of gastrointestinal tissues and prostate raises the question of the role of the beta 3-adrenoceptor in motility and secretory processes.