Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Ilas is active.

Publication


Featured researches published by Dan Ilas.


Archive | 2011

Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

S.R. Greene; Jess C Gehin; David Eugene Holcomb; Juan J. Carbajo; Dan Ilas; Anselmo T Cisneros; Venugopal Koikal Varma; W.R. Corwin; Dane F Wilson; Graydon L. Yoder; A L Qualls; Fred J Peretz; George F. Flanagan; Dwight A Clayton; Eric Craig Bradley; Gary L Bell; John D. Hunn; Peter J Pappano; Mustafa Sacit Cetiner

This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.


Archive | 2011

Core and Refueling Design Studies for the Advanced High Temperature Reactor

David Eugene Holcomb; Dan Ilas; Venugopal Koikal Varma; Anselmo T Cisneros; Ryan P Kelly; Jess C Gehin

The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure drop across the core was restricted to no more than 1.5 atm during normal operation to minimize the upward force on the core. Also, the flow velocity in the core was restricted to 3 m/s to minimize erosion of the fuel plates. Section 3.1.1 of this report discusses the design restrictions in more detail.


Nuclear Technology | 2013

Verification of a Depletion Method in SCALE for the Advanced High-Temperature Reactor

Ryan Kelly; Dan Ilas

This study describes a new approach employing the Dancoff correction method to model the TRISO-based fuel form used by the Advanced High-Temperature Reactor (AHTR) design concept. The Dancoff correction method is used to perform isotope depletion analysis using the TRITON sequence of SCALE and is verified by code-to-code comparisons. The current AHTR fuel design has TRISO particles concentrated along the edges of a slab fuel element. This geometry prevented the use of the DOUBLEHET treatment, previously developed in SCALE to model spherical and cylindrical fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous-energy-based depletion code systems. The method was initially tested on a fuel configuration typical of the Next Generation Nuclear Plant, where DOUBLEHET treatment is possible. A confirmatory study was performed on the AHTR reference core geometry using the VESTA code, which uses the continuous-energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole-core characteristics, such as the multiplication factor and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu, and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where DOUBLEHET treatment cannot be performed.


Nuclear Technology | 2009

MONTE CARLO ASSESSMENTS OF ABSORBED DOSES TO THE HANDS OF RADIOPHARMACEUTICAL WORKERS DUE TO PHOTON EMITTERS

Dan Ilas; Keith F. Eckerman; Sami Sherbini; Harriet Karagiannis

Abstract This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.


Health Physics | 2011

Correction factors applied to finger dosimetry: a theoretical assessment of appropriate values for use in handling radiopharmaceuticals.

Sami Sherbini; Dan Ilas; Keith F. Eckerman; Joseph DeCicco

United States Nuclear Regulatory Commission (USNRC) regulations limit the dose to the skin to 500 mSv per year. This is also the dose limit recommended by the International Commission on Radiological Protection (ICRP). The operational quantity recommended by ICRP for quantifying dose to the skin is the personal dose equivalent, Hp(0.07) and is identical to NRCs shallow dose equivalent, Hs, also measured at a skin depth of 7 mg cm−2. However, whereas ICRP recommends averaging the dose to the skin over an area of 1 cm2 regardless of the size of the exposed area of skin, USNRC requires the shallow dose equivalent to be averaged over 10 cm2. To monitor dose to the skin of the hands of workers handling radioactive materials and particularly in radiopharmaceutical manufacturing facilities, which is the focus of this work, workers are frequently required to wear finger ring dosimeters. The dosimeters monitor the dose at the location of the sensitive element, but this is not the dose required to show compliance (i.e., the dose averaged over the highest exposed contiguous 10 cm2 of skin). Therefore, it may be necessary to apply a correction factor that enables estimation of the required skin dose from the dosimeter reading. This work explored the effects of finger ring placement and of the geometry of the radioactive materials being handled by the worker on the relationship between the dosimeter reading and the desired average dose. A mathematical model of the hand was developed for this purpose that is capable of positioning the fingers in any desired grasping configuration, thereby realistically modeling manipulation of any object. The model was then used with the radiation transport code MCNP to calculate the dose distribution on the skin of the hand when handling a variety of radioactive vials and syringes, as well as the dose to the dosimeter element. Correction factors were calculated using the results of these calculations and examined for any patterns that may be useful in establishing an appropriate correction factor for this type of work. It was determined that a correction factor of one applied to the dosimeter reading, with the dosimeter placed at the base of the middle finger, provides an adequate estimate of the required average dose during a monitoring period for most commonly encountered geometries. Different correction factors may be required for exceptional or unusual source geometries and must be considered on a case-by-case basis.


Archive | 2012

AHTR Mechanical, Structural, And Neutronic Preconceptual Design

Venugopal Koikal Varma; David Eugene Holcomb; Fred J Peretz; Eric Craig Bradley; Dan Ilas; A L Qualls; Nathaniel M Zaharia


Archive | 2013

Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis

Ahmad M. Ibrahim; Douglas E. Peplow; Kursat B. Bekar; Cihangir Celik; John M Scaglione; Dan Ilas; John C. Wagner


Nuclear Technology | 2013

Neutronics and Depletion Methods for Parametric Studies of Fluoride Salt Cooled High Temperature Reactors with Slab Fuel Geometry and Multi-Batch Fuel Management Schemes

Anselmo T. Cisneros; Dan Ilas


Transactions of the american nuclear society | 2010

Preliminary Nuclear Design Studies for a Small Modular Advanced High Temperature Reactor (SmAHTR)

Dan Ilas; Jess C Gehin; S.R. Greene


Archive | 2010

HTTR Fuel Block Simulations with SCALE

Dan Ilas; Jess C Gehin

Collaboration


Dive into the Dan Ilas's collaboration.

Top Co-Authors

Avatar

David Eugene Holcomb

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jess C Gehin

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anselmo T Cisneros

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Douglas E. Peplow

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eric Craig Bradley

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John C. Wagner

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Keith F. Eckerman

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark L Williams

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S.R. Greene

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge