Dan J. Bare
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dan J. Bare.
American Journal of Physiology-heart and Circulatory Physiology | 2013
Shwetha Mureli; Christopher Gans; Dan J. Bare; David L. Geenen; Nalin M. Kumar; Kathrin Banach
Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 cells were plated on microelectrode arrays and their spontaneous activity and θ was determined from field potential recordings. In heterocellular cultures of MSCs and HL-1 cells the beating frequency was attenuated (t(0h): 2.26 ± 0.18 Hz; t(4h): 1.98 ± 0.26 Hz; P < 0.01) concomitant to the intercellular coupling between MSCs and cardiomyocytes. In HL-1 monolayers supplemented with MSC conditioned media (ConM) or tyrode (ConT) θ significantly increased in a time-dependent manner (ConT: t(0h): 2.4 cm/s ± 0.2; t(4h): 3.1 ± 0.4 cm/s), whereas the beating frequency remained constant. Connexin (Cx)43 mRNA and protein expression levels also increased after ConM or ConT treatment over the same time period. Enhanced low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation after ConT treatment implicates the Wnt signaling pathway. Suppression of Wnt secretion from MSCs (IWP-2; 5 μmol/l) reduced the efficacy of ConT to induce phospho-LRP6 and to increase θ. Inhibition of β-catenin (cardamonin; 10 μmol/l) or GSK3-α/β (LiCl; 5 mmol/l) also suppressed changes in θ, further supporting the hypothesis that MSC-mediated Cx43 upregulation occurs in part through secreted Wnt ligands and activation of the canonical Wnt signaling pathway.
Journal of Molecular and Cellular Cardiology | 2012
Jaime DeSantiago; Dan J. Bare; I. Semenov; R.D. Minshall; David L. Geenen; Beata M. Wolska; Kathrin Banach
In clinical trials mesenchymal stem cells (MSCs) are transplanted into cardiac ischemic regions to decrease infarct size and improve contractility. However, the mechanism and time course of MSC-mediated cardioprotection are incompletely understood. We tested the hypothesis that paracrine signaling by MSCs promotes changes in cardiac excitation-contraction (EC) coupling that protects myocytes from cell death and enhances contractility. Isolated mouse ventricular myocytes (VMs) were treated with control tyrode, MSC conditioned-tyrode (ConT) or co-cultured with MSCs. The Ca handling properties of VMs were monitored by laser scanning confocal microscopy and whole cell voltage clamp. ConT superfusion of VMs resulted in a time dependent increase of the Ca transient amplitude (ConT(15min): ΔF/F(0)=3.52±0.38, n=14; Ctrl(15min): ΔF/F(0)=2.41±0.35, n=14) and acceleration of the Ca transient decay (τ: ConT: 269±18ms n=14; vs. Ctrl: 315±57ms, n=14). Voltage clamp recordings confirmed a ConT induced increase in I(Ca,L) (ConT: -5.9±0.5 pA/pF n=11; vs. Ctrl: -4.04±0.3 pA/pF, n=12). The change of τ resulted from increased SERCA activity. Changes in the Ca transient amplitude and τ were prevented by the PI3K inhibitors Wortmannin (100nmol/L) and LY294002 (10μmol/L) and the Akt inhibitor V (20μmol/L) indicating regulation through PI3K signal transduction and Akt activation which was confirmed by western blotting. A change in τ was also prevented in eNOS(-/-) myocytes or by inhibition of eNOS suggesting an NO mediated regulation of SERCA activity. Since paracrine signaling further resulted in increased survival of VMs we propose that the Akt induced change in Ca signaling is also a mechanism by which MSCs mediate an anti-apoptotic effect.
Stem Cells and Development | 2013
Jaime DeSantiago; Dan J. Bare; Kathrin Banach
Mesenchymal stem cell (MSC) transplantation after ischemia/reperfusion (I/R) injury reduces infarct size and improves cardiac function. We used mouse ventricular myocytes (VMs) in an in vitro model of I/R to determine the mechanism by which MSCs prevent reperfusion injury by paracrine signaling. Exposure of mouse VMs to an ischemic challenge depolarized their mitochondrial membrane potential (Ψmito), increased their diastolic Ca(2+), and significantly attenuated cell shortening. Reperfusion of VMs with Ctrl tyrode or MSC-conditioned tyrode (ConT) resulted in a transient increase of the Ca(2+) transient amplitudes in all cells. ConT-reperfused cells exhibited a decreased number early after depolarization (EADs) (ConT: 6.3% vs. Ctrl: 28.4%) and prolonged survival (ConT: 58% vs. Ctrl: 33%). Ψmito rapidly recovered in Ctrl as well as ConT-treated VMs on reperfusion; however, in Ctrl solution, an exaggerated hyperpolarization of Ψmito was determined that preceded the collapse of Ψmito. The ability of ConT to attenuate the hyperpolarization of Ψmito was suppressed on inhibition of the PI3K/Akt signaling pathway or IK,ATP. However, protection of Ψmito was best mimicked by the reactive oxygen species (ROS) scavenger mitoTEMPO. Analysis of ConT revealed a significant antioxidant capacity that was linked to the presence of extracellular superoxide dismutase (SOD3) in ConT. In conclusion, MSC ConT protects VMs from simulated I/R injury by its SOD3-mediated antioxidant capacity and by delaying the recovery of Ψmito through Akt-mediated opening of IK,ATP. These changes attenuate reperfusion-induced ROS production and prevent the opening of the permeability transition pore and arrhythmic Ca(2+) release.
Journal of Molecular and Cellular Cardiology | 2014
Jaime DeSantiago; Dan J. Bare; Lei Xiao; Yunbo Ke; R. John Solaro; Kathrin Banach
Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca(2+) handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1(-/-)) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca(2+) transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1(-/-) VMs during 15 min of simulated ischemia. However, Pak1(-/-) VMs exhibited an exaggerated increase in [Ca(2+)]i, which resulted in spontaneous Ca(2+) release events and waves. The Ca(2+) overload in Pak1(-/-) VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1(-/-) VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47(phox-/-)) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1(-/-) VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca(2+) overload in Pak1(-/-) VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca(2+) overload under conditions where no significant changes in excitation-contraction coupling are yet evident.
Journal of Molecular and Cellular Cardiology | 2013
Jaime DeSantiago; Dan J. Bare; Yunbo Ke; Katherine A. Sheehan; R. John Solaro; Kathrin Banach
p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1(-/-) mice. Pak1(-/-) Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased T-tubular density in Pak1(-/-) VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1(-/-) mice where the T-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the T-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the T-tubular system whose remodeling is an integral feature of hypertrophic remodeling.
Brain Research | 2011
Dan J. Bare; Sara G. Becker-Catania; George H. DeVries
In the developing PNS, axonal neuregulin-1 (NRG1) type III is the key determinant for myelination. However, the specific role for NRG1 (III) in the CNS has not been established. To address this issue, isotype-specific antibodies were generated, characterized, and used for the immunofluorescent localization of NRG1 (III) in the developing and adult CNS of rat. In contrast to adult peripheral nerve, which showed robust axonal staining, no immunoreactivity was observed in CNS myelinated tracts during the period of active myelination or in the adult CNS. Surprisingly, NRG1 (III) was prominently expressed on dendrites and soma in both the developing and adult CNS. These findings were corroborated through the subcellular fractionation of adult rat brain combined with an immunoblotting analysis. The immunolocalization of NRG1 (III) suggests that it plays a novel role in the myelination fate of CNS axons possibly through undetermined roles in neuronal maturation, or dendritic development and activation.
Journal of Molecular and Cellular Cardiology | 2017
Laetitia Pereira; Dan J. Bare; Samuel Galice; Thomas R. Shannon; Donald M. Bers
Heart Rhythm | 2018
Jaime DeSantiago; Dan J. Bare; Disha Varma; R. John Solaro; Rishi Arora; Kathrin Banach
Circulation | 2014
Jaime DeSantiago; Dan J. Bare; Yunbo Ke; R J Solaro; Boaz Avitall; Rishi Arora; Kathrin Banach
Biophysical Journal | 2014
Jaime DeSantiago; Dan J. Bare; Yunbo Ke; R. John Solaro; Boaz Avitall; Rishi Arora; Kathrin Banach