Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Rubenstein is active.

Publication


Featured researches published by Dan Rubenstein.


acm special interest group on data communication | 2002

SOS: secure overlay services

Angelos D. Keromytis; Vishal Misra; Dan Rubenstein

Denial of service (DoS) attacks continue to threaten the reliability of networking systems. Previous approaches for protecting networks from DoS attacks are reactive in that they wait for an attack to be launched before taking appropriate measures to protect the network. This leaves the door open for other attacks that use more sophisticated methods to mask their traffic.We propose an architecture called Secure Overlay Services (SOS) that proactively prevents DoS attacks, geared toward supporting Emergency Services or similar types of communication. The architecture is constructed using a combination of secure overlay tunneling, routing via consistent hashing, and filtering. We reduce the probability of successful attacks by (i) performing intensive filtering near protected network edges, pushing the attack point perimeter into the core of the network, where high-speed routers can handle the volume of attack traffic, and (ii) introducing randomness and anonymity into the architecture, making it difficult for an attacker to target nodes along the path to a specific SOS-protected destination.Using simple analytical models, we evaluate the likelihood that an attacker can successfully launch a DoS attack against an SOS-protected network. Our analysis demonstrates that such an architecture reduces the likelihood of a successful attack to minuscule levels.


acm special interest group on data communication | 2002

Secure Overlay Services

Angelos D. Keromytis; Vishal Misra; Dan Rubenstein

Denial of service (DoS) attacks continue to threaten the reliability of networking systems. Previous approaches for protecting networks from DoS attacks are reactive in that they wait for an attack to be launched before taking appropriate measures to protect the network. This leaves the door open for other attacks that use more sophisticated methods to mask their traffic.We propose an architecture called Secure Overlay Services (SOS) that proactively prevents DoS attacks, geared toward supporting Emergency Services or similar types of communication. The architecture is constructed using a combination of secure overlay tunneling, routing via consistent hashing, and filtering. We reduce the probability of successful attacks by (i) performing intensive filtering near protected network edges, pushing the attack point perimeter into the core of the network, where high-speed routers can handle the volume of attack traffic, and (ii) introducing randomness and anonymity into the architecture, making it difficult for an attacker to target nodes along the path to a specific SOS-protected destination.Using simple analytical models, we evaluate the likelihood that an attacker can successfully launch a DoS attack against an SOS-protected network. Our analysis demonstrates that such an architecture reduces the likelihood of a successful attack to minuscule levels.


wireless communications and networking conference | 2007

Distributed Channel Assignment in Multi-Radio 802.11 Mesh Networks

Bongjun Ko; Vishal Misra; Jitendra Padhye; Dan Rubenstein

To increase the utilization of the available frequency channel space in 802.11-based wireless mesh networks, recent work has explored solutions based on multi-radio stations. This paper reports on our design and experimental study of a distributed, self-stabilizing mechanism that assigns channels to multi-radio nodes in wireless mesh networks. We take a modular approach by decoupling the channel selection decision from the data forwarding mechanism, which makes our solution readily applicable to real-world operation when used with emerging multi-radio routing solutions. We demonstrate the efficacy of our protocol on a real-world, 14-node testbed comprised of nodes, each equipped with an 802.11a card and an 802.11g card. We show via extensive measurements on our testbed that our channel assignment algorithm improves the network capacity by 50% in comparison to a homogeneous channel assignment and by 20% in comparison to a random assignment.


IEEE ACM Transactions on Networking | 2002

Detecting shared congestion of flows via end-to-end measurement

Dan Rubenstein; James F. Kurose; Donald F. Towsley

Current Internet congestion control protocols operate independently on a per-flow basis. Recent work has demonstrated that cooperative congestion control strategies between flows can improve performance for a variety of applications, ranging from aggregated TCP transmissions to multiple-sender multicast applications. However, in order for this cooperation to be effective, one must first identify the flows that are congested at the same set of resources. In this paper, we present techniques based on loss or delay observations at end hosts to infer whether or not two flows experiencing congestion are congested at the same network resources. Our novel result is that such detection can be achieved for unicast flows, but the techniques can also be applied to multicast flows. We validate these techniques via queueing analysis, simulation, and experimentation within the Internet. In addition, we demonstrate preliminary simulation results that show that the delay-based technique can determine whether two TCP flows are congested at the same set of resources. We also propose metrics that can be used as a measure of the amount of congestion sharing between two flows.


ieee international conference computer and communications | 2007

Using Channel Hopping to Increase 802.11 Resilience to Jamming Attacks

Vishnu Navda; Aniruddha Bohra; Samrat Ganguly; Dan Rubenstein

802.11a, b, and g standards were designed for deployment in cooperative environments, and hence do not include mechanisms to protect from jamming attacks. In this paper, we explore how to protect 802.11 networks from jamming attacks by having the legitimate transmission hop among channels to hide the transmission from the jammer. Using a combination of mathematical analysis and prototype experimentation in an 802.11a environment, we explore how much throughput can be maintained in comparison to the maintainable throughput in a cooperative, jam-free environment. Our experimental and analytical results show that in todays conventional 802.11a networks, we can achieve up to 60% of the original throughput. Our mathematical analysis allows us to extrapolate the throughput that can be maintained when the constraint on the number of orthogonal channels used for both legitimate communication and for jamming is relaxed.


IEEE Journal on Selected Areas in Communications | 2004

SOS: an architecture for mitigating DDoS attacks

Angelos D. Keromytis; Vishal Misra; Dan Rubenstein

We propose an architecture called secure overlay services (SOS) that proactively prevents denial of service (DoS) attacks, including distributed (DDoS) attacks; it is geared toward supporting emergency services, or similar types of communication. The architecture uses a combination of secure overlay tunneling, routing via consistent hashing, and filtering. We reduce the probability of successful attacks by: 1) performing intensive filtering near protected network edges, pushing the attack point perimeter into the core of the network, where high-speed routers can handle the volume of attack traffic and 2) introducing randomness and anonymity into the forwarding architecture, making it difficult for an attacker to target nodes along the path to a specific SOS-protected destination. Using simple analytical models, we evaluate the likelihood that an attacker can successfully launch a DoS attack against an SOS-protected network. Our analysis demonstrates that such an architecture reduces the likelihood of a successful attack to minuscule levels. Our performance measurements using a prototype implementation indicate an increase in end-to-end latency by a factor of two for the general case, and an average heal time of less than 10 s.


ACM Transactions on Internet Technology | 2007

Provisioning servers in the application tier for e-commerce systems

Daniel A. M. Villela; Prashant Pradhan; Dan Rubenstein

Server providers that support e-commerce applications as a service to multiple e-commerce websites traditionally use a tiered server architecture. This architecture includes an application tier to process requests that require dynamically generated content. How this tier is provisioned can significantly impact a providers profit margin. We study methods to provision servers in the application serving tier to increase a server providers profits. First, we examine actual traces of request arrivals to the application tier of e-commerce sites, and show that the arrival process is effectively Poisson. Next, we construct an optimization problem in the context of a set of application servers modeled as M/G/l/PS queueing systems, and derive three simple methods to approximate the allocation that maximizes profits. Simulation results demonstrate that our approximation methods achieve profits that are close to optimal and are significantly higher than those achieved via simple heuristics.


international conference on computer communications | 2005

Optimal peer selection for P2P downloading and streaming

Micah Adler; Rakesh Kumar; Keith W. Ross; Dan Rubenstein; Torsten Suel; David D. Yao

In a P2P system, a client peer may select one or more server peers to download a specific file. In a P2P resource economy, the server peers charge the client for the downloading. A server peers price would naturally depend on the specific object being downloaded, the duration of the download, and the rate at which the download is to occur. The optimal peer selection problem is to select, from the set of peers that have the desired object, the subset of peers and download rates that minimizes cost. In this paper we examine a number of natural peer selection problems for both P2P downloading and P2P streaming. For downloading, we obtain the optimal solution for minimizing the download delay subject to a budget constraint, as well as the corresponding Nash equilibrium. For the streaming problem, we obtain a solution that minimizes cost subject to continuous playback while allowing for one or more server peers to fail during the streaming process. The methodologies developed in this paper are applicable to a variety of P2P resource economy problems.


conference on emerging network experiment and technology | 2008

On cooperative settlement between content, transit and eyeball internet service providers

Richard T. B. Ma; Dah Ming Chiu; John C. S. Lui; Vishal Misra; Dan Rubenstein

Internet service providers (ISPs) depend on one another to provide global network services. However, the profit-seeking nature of the ISPs leads to selfish behaviors that result in inefficiencies and disputes in the network. This concern is at the heart of the “network neutrality” debate, which also asks for an appropriate compensation structure that satisfies all types of ISPs. Our previous work showed in a general network model that the Shapley value has several desirable properties, and that if applied as the profit model, selfish ISPs would yield globally optimal routing and interconnecting decisions. In this paper, we use a more detailed and realistic network model with three classes of ISPs: content, transit, and eyeball. This additional detail enables us to delve much deeper into the implications of a Shapley settlement mechanism. We derive closed-form Shapley values for more structured ISP topologies and develop a dynamic programming procedure to compute the Shapley values under more diverse Internet topologies. We also identify the implications on the bilateral compensation between ISPs and the pricing structures for differentiated services. In practice, these results provide guidelines for solving disputes between ISPs and for establishing regulatory protocols for differentiated services and the industry.


acm/ieee international conference on mobile computing and networking | 2009

Challenge: ultra-low-power energy-harvesting active networked tags (EnHANTs)

Maria Gorlatova; Peter R. Kinget; Ioannis Kymissis; Dan Rubenstein; Xiaodong Wang; Gil Zussman

This paper presents the design challenges posed by a new class of ultra-low-power devices referred to as Energy-Harvesting Active Networked Tags (EnHANTs). EnHANTs are small, flexible, and self-reliant (in terms of energy devices that can be attached to objects that are traditionally not networked (e.g., books, clothing, and produce), thereby providing the infrastructure for various novel tracking applications. Examples of these applications include locating misplaced items, continuous monitoring of objects (items in a store, boxes in transit), and determining locations of disaster survivors. Recent advances in ultra-low-power wireless communications, ultra-wideband (UWB) circuit design, and organic electronic harvesting techniques will enable the realization of EnHANTs in the near future. In order for EnHANTs to rely on harvested energy, they have to spend significantly less energy than Bluetooth, Zigbee, and IEEE 802.15.4a devices. Moreover, the harvesting components and the ultra-low-power physical layer have special characteristics whose implications on the higher layers have yet to be studied (e.g., when using ultra-low-power circuits, the energy required to receive a bit is an order of magnitude higher than the energy required to transmit a bit). These special characteristics pose several new cross-layer research problems. In this paper, we describe the design challenges at the layers above the physical layer, point out relevant research directions, and outline possible starting points for solutions.

Collaboration


Dive into the Dan Rubenstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard T. B. Ma

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

John C. S. Lui

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald F. Towsley

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge