Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dan Thomas Major is active.

Publication


Featured researches published by Dan Thomas Major.


Journal of the American Chemical Society | 2011

Structural Analysis of Electrolyte Solutions for Rechargeable Mg Batteries by Stereoscopic Means and DFT Calculations

Nir Pour; Yossi Gofer; Dan Thomas Major; Doron Aurbach

We present a rigorous analysis of unique, wide electrochemical window solutions for rechargeable magnesium batteries, based on aromatic ligands containing organometallic complexes. These solutions are comprised of the transmetalation reaction products of Ph(x)MgCl(2-x) and Ph(y)AlCl(3-y) in different proportions, in THF. In principle, these reactions involve the exchange of ligands between the magnesium and the aluminum based compounds, forming ionic species and neutral molecules, such as Mg(2)Cl(3)(+)·6THF, MgCl(2)·4THF, and Ph(y)AlCl(4-y)(-) (y = 0-4). The identification of the equilibrium species in the solutions is carried out by a combination of Raman spectroscopy, multinuclear NMR, and single-crystal XRD analyses. The association of the spectroscopic results with explicit identifiable species is supported by spectral analyses of specially synthesized reference compounds and DFT quantum-mechanical calculations. The correlation between the identified solution equilibrium species and the electrochemical anodic stability window is investigated. This study advances both development of new nonaqueous solution chemistry and possible development of high-energy density rechargeable Mg batteries.


Journal of Colloid and Interface Science | 2008

Polymer-surfactant interactions: binding mechanism of sodium dodecyl sulfate to poly(diallyldimethylammonium chloride).

Gilat Nizri; Serge Lagerge; Alexander Kamyshny; Dan Thomas Major; Shlomo Magdassi

The binding mechanism of poly(diallyldimethylammonium chloride), PDAC, and sodium dodecyl sulfate, SDS, has been comprehensively studied by combining binding isotherms data with microcalorimetry, zeta potential, and conductivity measurements, as well as ab initio quantum mechanical calculations. The obtained results demonstrate that surfactant-polymer interaction is governed by both electrostatic and hydrophobic interactions, and is cooperative in the presence of salt. This binding results in the formation of nanoparticles, which are positively or negatively charged depending on the molar ratio of surfactant to PDAC monomeric units. From microcalorimetry data it was concluded that the exothermic character of the interaction diminishes with the increase in the surfactant/polymer ratio as well as with an increase in electrolyte concentration.


Journal of Chemical Theory and Computation | 2007

An integrated path integral and free-energy perturbation-umbrella sampling method for computing kinetic isotope effects of chemical reactions in solution and in enzymes

Dan Thomas Major; Jiali Gao

An integrated centroid path integral and free-energy perturbation-umbrella sampling (PI-FEP/UM) method for computing kinetic isotope effects (KIEs) for chemical reactions in solution and in enzymes is presented. The method is based on the bisection sampling in centroid path integral simulations to include nuclear quantum effects to the classical potential of mean force. The required accuracy for computing kinetic isotope effects is achieved by coupled free-energy perturbation and umbrella sampling for reactions involving different isotopes. The use of FEP with respect to different masses results in relatively small statistical uncertainties, whereas if KIEs are computed directly by the difference in free energies obtained from the quantum mechanical potentials of mean force for different isotopes, the statistical errors are significantly greater. The PI-FEP/UM method is illustrated in two applications. The first reaction is the decarboxylation of N-methyl picolinate in water, for which the primary (13)C and secondary (15)N KIEs have been determined. The second reaction is the proton-transfer reaction between nitroethane and an acetate ion in water. In both cases, the computational results are in accord with experimental data, and the findings provide further insight into the mechanism of these reactions in water.


Journal of the American Chemical Society | 2010

Challenges posed to bornyl diphosphate synthase: diverging reaction mechanisms in monoterpenes.

Michal Weitman; Dan Thomas Major

The simplest form of terpenoid chemistry is found for the monoterpenes, which give plants fragrance, flavor, and medicinal properties. Monoterpene synthases employ geranyl diphosphate as a substrate to generate an assortment of cyclic products. In the current study we present a detailed analysis of the multiple gas-phase reaction pathways in the synthesis of bornyl cation from geranyl diphosphate. Additionally, the fate of the proposed bornyl cation intermediate in the bornyl diphosphate synthase reaction is investigated by molecular dynamics simulations. We employ accurate density functional theory (DFT) methods after careful validation against high-level ab initio data for a set of model carbocations. The gas-phase results for the monoterpene reactions indicate a diverging reaction mechanism with multiple products in the absence of enzymatic control. This complex potential energy surface includes several possible bifurcation points due to the presence of secondary cations. Additionally, the suggested bornyl cation intermediate in the bornyl diphosphate synthase reaction is studied by molecular dynamics simulations employing a hybrid quantum mechanics (DFT)-molecular mechanics potential energy function. The simulations suggest that the bornyl cation is a transient species as in the gas phase and that electrostatic steering directs the formation of the final product, bornyl diphosphate.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Differential Quantum Tunneling Contributions in Nitroalkane Oxidase Catalyzed and the Uncatalyzed Proton Transfer Reaction

Dan Thomas Major; Annie Heroux; Allen M. Orville; Michael P. Valley; Paul F. Fitzpatrick; Jiali Gao

The proton transfer reaction between the substrate nitroethane and Asp-402 catalyzed by nitroalkane oxidase and the uncatalyzed process in water have been investigated using a path-integral free-energy perturbation method. Although the dominating effect in rate acceleration by the enzyme is the lowering of the quasiclassical free energy barrier, nuclear quantum effects also contribute to catalysis in nitroalkane oxidase. In particular, the overall nuclear quantum effects have greater contributions to lowering the classical barrier in the enzyme, and there is a larger difference in quantum effects between proton and deuteron transfer for the enzymatic reaction than that in water. Both experiment and computation show that primary KIEs are enhanced in the enzyme, and the computed Swain-Schaad exponent for the enzymatic reaction is exacerbated relative to that in the absence of the enzyme. In addition, the computed tunneling transmission coefficient is approximately three times greater for the enzyme reaction than the uncatalyzed reaction, and the origin of the difference may be attributed to a narrowing effect in the effective potentials for tunneling in the enzyme than that in aqueous solution.


Angewandte Chemie | 2015

Metallocorroles as Nonprecious‐Metal Catalysts for Oxygen Reduction

Naomi Levy; Atif Mahammed; Monica Kosa; Dan Thomas Major; Zeev Gross; Lior Elbaz

The future of affordable fuel cells strongly relies on the design of earth-abundant (non-platinum) catalysts for the electrochemical oxygen reduction reaction (ORR). However, the bottleneck in the overall process occurs therein. We have examined herein trivalent Mn, Fe, Co, Ni, and Cu complexes of β-pyrrole-brominated corrole as ORR catalysts. The adsorption of these complexes on a high-surface-area carbon powder (BP2000) created a unique composite material, used for electrochemical measurements in acidic aqueous solutions. These experiments disclosed a clear dependence of the catalytic activity on the metal center of the complexes, in the order of Co>Fe>Ni>Mn>Cu. The best catalytic performance was obtained for the Co(III) corrole, whose onset potential was as positive as 0.81 V versus the reversible hydrogen electrode (RHE). Insight into the properties of these systems was gained by spectroscopic and computational characterization of the reduced and oxidized forms of the metallocorroles.


Journal of the American Chemical Society | 2012

Electrostatically guided dynamics--the root of fidelity in a promiscuous terpene synthase?

Dan Thomas Major; Michal Weitman

Terpene cyclases are responsible for the initial cyclization cascade in the multistep synthesis of more than 60,000 known natural products. This abundance of compounds is generated using a very limited pool of substrates based on linear isoprenoids. The astounding chemodiversity obtained by terpene cyclases suggests a tremendous catalytic challenge to these often promiscuous enzymes. In the current study we present a detailed mechanistic view of the biosynthesis of the monoterpene bornyl diphosphate (BPP) from geranyl diphosphate by BPP synthase using state of the art simulation methods. We identify the bornyl cation as an enzyme-induced bifurcation point on the multidimensional free energy surface, connecting between the product BPP and the side product camphene. Chemical dynamics simulations suggest that the active site diphosphate moiety steers reaction trajectories toward product formation. Nonetheless, chemical dynamics is not precise enough for exclusive product formation, providing a rationale for the lack of fidelity in this promiscuous terpene cyclase.


Journal of Chemical Theory and Computation | 2006

Path Integral Simulations of Proton Transfer Reactions in Aqueous Solution Using Combined QM/MM Potentials

Dan Thomas Major; Mireia Garcia-Viloca; Jiali Gao

A bisection sampling method was implemented in path integral simulations of chemical reactions in solution in the framework of the quantized classical path approach. In the present study, we employ a combined quantum mechanical and molecular mechanical (QM/MM) potential to describe the potential energy surface and the path integral method to incorporate nuclear quantum effects. We examine the convergence of the bisection method for two proton-transfer reactions in aqueous solution at room temperature. The first reaction involves the symmetrical proton transfer between an ammonium ion and an ammonia molecule. The second reaction is the ionization of nitroethane by an acetate ion. To account for nuclear quantum mechanical corrections, it is sufficient to quantize the transferring light atom in the ammonium ion-ammonia reaction, while it is necessary to also quantize the donor and acceptor atoms in the nitroethane-acetate ion reaction. Kinetic isotope effects have been computed for isotopic substitution of the transferring proton by a deuteron in the nitroethane-acetate reaction. In all computations, it is important to employ a sufficient number of polymer beads along with a large number of configurations to achieve convergence in these simulations.


Journal of Computational Chemistry | 2008

Combined QM/MM and path integral simulations of kinetic isotope effects in the proton transfer reaction between nitroethane and acetate ion in water

Jiali Gao; Kin Yiu Wong; Dan Thomas Major

An integrated Feynman path integral‐free energy perturbation and umbrella sampling (PI‐FEP/UM) method has been used to investigate the kinetic isotope effects (KIEs) in the proton transfer reaction between nitroethane and acetate ion in water. In the present study, both nuclear and electronic quantum effects are explicitly treated for the reacting system. The nuclear quantum effects are represented by bisection sampling centroid path integral simulations, while the potential energy surface is described by a combined quantum mechanical and molecular mechanical (QM/MM) potential. The accuracy essential for computing KIEs is achieved by a FEP technique that transforms the mass of a light isotope into a heavy one, which is equivalent to the perturbation of the coordinates for the path integral quasiparticle in the bisection sampling scheme. The PI‐FEP/UM method is applied to the proton abstraction of nitroethane by acetate ion in water through molecular dynamics simulations. The rule of the geometric mean and the Swain–Schaad exponents for various isotopic substitutions at the primary and secondary sites have been examined. The computed total deuterium KIEs are in accord with experiments. It is found that the mixed isotopic Swain–Schaad exponents are very close to the semiclassical limits, suggesting that tunneling effects do not significantly affect this property for the reaction between nitroethane and acetate ion in aqueous solution.


Journal of Materials Chemistry | 2016

Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2

Florian Schipper; Mudit Dixit; Daniela Kovacheva; Michael Talianker; Ortal Haik; Judith Grinblat; Evan M. Erickson; Chandan Ghanty; Dan Thomas Major; Boris Markovsky; Doron Aurbach

Ni-rich layered lithiated transition metal oxides Li[NixCoyMnz]O2 (x + y + z = 1) are the most promising materials for positive electrodes for advanced Li-ion batteries. However, one of the drawbacks of these materials is their low intrinsic stability during prolonged cycling. In this work, we present lattice doping as a strategy to improve the structural stability and voltage fade on prolonged cycling of LiNi0.6Co0.2Mn0.2O2 (NCM-622) doped with zirconium (+4). It was found that LiNi0.56Zr0.04Co0.2Mn0.2O2 is stable upon galvanostatic cycling, in contrast to the undoped material, which undergoes partial structural layered-to-spinel transformation during cycling. The current study provides sub-nanoscale insight into the role of Zr4+ doping on such a transformation in Ni-rich Li[NixCoyMnz]O2 materials by adopting a combined experimental and first-principles theory approach. A possible mechanism for a Ni-mediated layered-to-spinel transformation in Ni-rich NCMs is also proposed.

Collaboration


Dive into the Dan Thomas Major's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiali Gao

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge