Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dana Jeong is active.

Publication


Featured researches published by Dana Jeong.


Journal of Nutritional Biochemistry | 2017

Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: Targeted and untargeted community analysis with correlation of biomarkers

Dong-Hyeon Kim; Hyunsook Kim; Dana Jeong; Il-Byeong Kang; Jung-Whan Chon; Hong-Seok Kim; Kwang-Young Song; Kun-Ho Seo

Kefir is a probiotic beverage containing over 50 species of lactic acid bacteria and yeast. In this study, the anti-obesity and anti-non-alcoholic fatty liver disease (NAFLD) effects of kefir were comprehensively addressed along with targeted and untargeted community analysis of the fecal microbiota in a high-fat diet (HFD)-induced obese mouse model. HFD-fed C57BL/6 mice were orally administrated either kefir or milk (control) once a day for 12 weeks, and body and organ weight, fecal microbiota and mycobiota, histopathology, blood cholesterol and cytokines and gene expressions were analyzed. Compared to the control, mice in the kefir group exhibited a significantly lower body weight (34.18 g vs. 40.24 g; p=0.00004) and histopathological liver lesion score (1.13 vs. 3.25; p=0.002). Remarkably, the kefir-fed mice also harbored more Lactobacillus/Lactococcus (7.01 vs. 6.32 log CFU/g), total yeast (6.07 vs. 5.01 log CFU/g) and Candida (5.56 vs. 3.88 log CFU/g). Kefir administration also up-regulated genes related to fatty acid oxidation, PPARα and AOX, in both the liver and adipose tissue (PPARα, 2.95- and 2.15-fold; AOX, 1.89- and 1.9-fold, respectively). The plasma concentration of IL-6, a proinflammatory marker, was significantly reduced following kefir consumption (50.39 pg/ml vs. 111.78 pg/ml; p=0.03). Strikingly, the populations of Lactobacillus/Lactococcus, total yeast and Candida were strongly correlated with PPARα gene expression in adipose and hepatic tissue (r=0.599, 0.580 and 0.562, respectively). These data suggest that kefir consumption modulates gut microbiota and mycobiota in HFD-fed mice, which prevents obesity and NAFLD via promoting fatty acid oxidation.


Molecular Nutrition & Food Research | 2017

Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue

Dong-Hyeon Kim; Dana Jeong; Il-Byeong Kang; Hyunsook Kim; Kwang-Young Song; Kun-Ho Seo

SCOPE Kefir consumption inhibits the development of obesity and non-alcoholic fatty liver disease (NALFD) in mice fed 60% high-fat diet (HFD). To identify the key contributor of this effect, we isolated lactic acid bacteria (LAB) from kefir and examined their anti-obesity properties from in vitro screening and in vivo validation. METHODS AND RESULTS Thirteen kefir LAB isolates were subjected to survivability test using artificial gastrointestinal environment and cholesterol-reducing assay. Lactobacillus kefiri DH5 showed 100% survivability in gastrointestinal environments and reduced 51.6% of cholesterol; thus, this strain was selected for in vivo experiment. Compared to the HFD-saline group, the HFD-DH5 group showed significantly lower body weight (34.68 versus 31.10 g; p < 0.001), epididymal adipose tissue weight (1.39 versus 1.05 g; p < 0.001), blood triglyceride (38.2 versus 31.0 mg/dL; p < 0.01) and LDL-cholesterol levels (19.4 versus 15.7 mg/dL; p < 0.01). In addition, L. kefiri DH5 administration significantly modulated gut microbiota of HFD-fed mice. The hepatic steatosis was significantly milder (Lesion score, 2.1 versus 1.2; p < 0.001) and adipocyte diameter was significantly smaller (65.1 versus 42.2 μm; p < 0.001) in the HFD-DH5 group. L. kefiri DH5 upregulated PPAR-α, FABP4, and CPT1 expression in the epididymal adipose tissues (2.29-, 1.77-, and 2.05-fold change, respectively), suggesting a reduction in adiposity by stimulating fatty acid oxidation. CONCLUSION L. kefiri DH5 exerts anti-obesity effects by direct reduction of cholesterol in the lumen and upregulation of PPAR-α gene in adipose tissues.


Korean Journal for Food Science of Animal Resources | 2016

Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria

Dong-Hyeon Kim; Dana Jeong; Hyunsook Kim; Il-Byeong Kang; Jung-Whan Chon; Kwang-Young Song; Kun-Ho Seo

Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited, while B. cereus, S. aureus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus, S. Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation.


Journal of Oral Microbiology | 2018

Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens

Dana Jeong; Dong-Hyeon Kim; Kwang-Young Song; Kun-Ho Seo

ABSTRACT Background: Streptococcus mutans and Streptococcus sobrinus are major causative bacterial pathogens of dental caries. Objective: We investigated the applicability of three Lactobacillus strains (L. kefiranofaciens DD2, DD5, and DD6) isolated from kefir and three commercial Lactobacillus strains (L. plantarum ATCC 10012, L. johnsonii JCM 1022, and L. rhamnosus ATCC 7469) as potential oral probiotics with respect to their survivability in an experimental oral environment, antimicrobial activity, and anti-biofilm formation activity against S. mutans and S. sobrinus. Results: Strains DD2, ATCC 10012, ATCC 7469, and JCM 1022 had the best oral survivability, including aerotolerance and enzymatic resistance, and inhibited the growth and biofilm formation of S. mutans and S. sobrinus. In particular, DD2 suppressed all three classes of biofilm formation-associated genes: those associated with carbohydrate metabolism and those encoding regulatory biofilm and adhesion proteins. Conclusions: These results indicate that the novel kefir isolate L. kefiranofaciens DD2 effectively and directly inhibits S. mutans and S. sobrinus.


International Journal of Food Microbiology | 2018

Heat resistance of Salmonella Enteritidis under prolonged exposure to acid-salt combined stress and subsequent refrigeration

Il-Byeong Kang; Dong-Hyeon Kim; Dana Jeong; Jin-Hyeong Park; Kun-Ho Seo

Salmonella Enteritidis is a major foodborne pathogen exposed to various environmental and preservation stresses in the food chain. Because adaptive responses of viable bacterial cells in the presence of sublethal stress can induce cross-protection against different stresses, we investigated the heat resistance of Salmonella Enteritidis at 60 °C under prolonged exposure to acid-salt combined stress and subsequent refrigeration. Salmonella Enteritidis was grown in tryptic soy broth at four pH values (4.5, 5.4, 6.4, and 7.3) and four NaCl concentrations (0%, 1%, 2%, and 3%) at 37 °C for 24 h and then incubated at 4 °C for 0, 1, 4, or 7 days. For 0 and 1 day-refrigerated cultures, previous adaptation to single stresses (acid or salt stress) increased the heat resistance of Salmonella Enteritidis, resulting in increased D-values, whereas the combination of acid and salt stress reduced heat tolerance; acid stress played a more critical role in mediating this effect than salt concentration. To elucidate the related mechanisms, the expression levels of heat shock sigma factors (rpoH) and heat shock genes (dnaK and groEL) were analyzed and found to be associated with the heat resistance of Salmonella Enteritidis. The refrigeration period was negatively correlated (P < 0.01) with the D-value (r = -0.505) and with the transcript levels of rpoH (r = -0.654), dnaK (r = -0.652), and groEL (r = -0.645). Our findings demonstrated that acid-salt combined preservation techniques and subsequent refrigeration may prevent S. Enteritidis survival in heat-pasteurized food products caused by cross-protection of acid or salt adapted cells.


Critical Reviews in Food Science and Nutrition | 2018

Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota

Dong-Hyeon Kim; Dana Jeong; Hyunsook Kim; Kun-Ho Seo

ABSTRACT Kefir is a natural complex fermented milk product containing more than 50 species of probiotic bacteria and yeast, and has been demonstrated to have multiple properties conferring health benefits, including antiobesity, anti-hepatic steatosis, antioxidative, antiallergenic, antitumor, anti-inflammatory, cholesterol-lowering, constipation-alleviating, and antimicrobial properties. To better understand the underlying mechanisms of these benefits, we here review research on the effect of kefir (and kefir microorganisms) consumption to modulate the host gut microbiota. Owing to its excellent gastrointestinal resistance and colonization ability and wide ranges of microbial interaction, kefir has shown significant and wide-spectrum modulatory effects on the host gut microbiota. In particular, as a bacteria- and yeast-containing food, kefir can modulate both the gut microbiota and mycobiota. Since the association of this modulation with health benefit has only been addressed in a small number of recent studies thus far, further studies are needed to determine the precise mechanisms of the beneficial effects of kefir in relation to the modulation of the gut microbiota and mycobiota. Gaining this insight will surely help to take full advantage of this unique probiotic food.


Journal of Food Protection | 2017

Improvement of Polymyxin-Egg Yolk-Mannitol Bromothymol Blue Agar for the Enumeration and Isolation of Bacillus cereus in Various Foods

Il-Byeong Kang; Jung-Whan Chon; Dong-Hyeon Kim; Dana Jeong; Hong-Seok Kim; Hyunsook Kim; Kun-Ho Seo

A modified polymyxin-egg yolk-mannitol-bromothymol blue agar (mPEMBA) was developed by supplementing polymyxin-egg yolk-mannitol-bromothymol blue agar (PEMBA) with trimethoprim to improve the selectivity for and recoverability of Bacillus cereus from naturally and artificially contaminated food samples. The number of B. cereus in mPEMBA was significantly higher than in PEMBA, indicating better recoverability (P < 0.05) in red pepper powder (PEMBA 0.80 ± 0.22 log CFU/g versus mPEMBA 1.95 ± 0.17 log CFU/g) and soybean paste (PEMBA 2.19 ± 0.18 log CFU/g versus mPEMBA 3.09 ± 0.13 log CFU/g). In addition, mPEMBA provided better visual differentiation of B. cereus colonies than PEMBA, which is attributable to the reduced number of competing microflora. We conclude that the addition of trimethoprim to PEMBA could generate a synergistic effect to improve selectivity for B. cereus .


Food Science and Biotechnology | 2017

Prevalence and toxin type of Clostridium perfringens in beef from four different types of meat markets in Seoul, Korea

Dana Jeong; Dong-Hyeon Kim; Il-Byeong Kang; Jung-Whan Chon; Hyunsook Kim; Ae-Son Om; Joo-Yeon Lee; Jin-San Moon; Deog-Hwan Oh; Kun-Ho Seo

Beef is the primary source of foodborne poisoning caused by Clostridium perfringens. We investigated the prevalence of C. perfringens in retail beef from four different types of meat markets in Seoul using a standard culture method and real-time PCR assay. From June to September 2015, 82 beef samples were collected from 6 department stores (n=12), 14 butcher shops (n=28), 16 traditional markets (n=32), and 5 supermarkets (n=10). The culture method and real-time PCR assay revealed that 4 (4.88%) and 10 (12.20%) samples were positive for C. perfringens, respectively. The beef purchased from the department store showed the highest prevalence (16.67%), followed by the traditional market (3.12%), butcher shop (3.57%), and supermarket (0%) (p>0.05). All isolates were type A and negative for the enterotoxin gene. In conclusion, the real-time PCR assay used in this study could be useful for rapid detection and screening of C. perfringens in beef.


Korean Journal for Food Science of Animal Resources | 2016

Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk.

Dong-Hyeon Kim; Jung-Whan Chon; Jong-Soo Lim; Hong-Seok Kim; Il-Byeong Kang; Dana Jeong; Kwang-Young Song; Hyunsook Kim; Kwang-Yup Kim; Kun-Ho Seo

The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk.


Journal of Milk Science and Biotechnology | 2016

Current Status and Prospects of Various Methods used for Screening Probiotic Microorganisms

Dong-Hyeon Kim; Hong-Seok Kim; Dana Jeong; Jung-Whan Chon; Hyunsook Kim; Young-Ji Kim; Il-Byung Kang; Soo-Kyung Lee; Kwang-Young Song; Jin-Hyeong Park; Ho-Seok Jang; Kun-Ho Seo

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP)(No. 2015R1A2A2A01005017).

Collaboration


Dive into the Dana Jeong's collaboration.

Top Co-Authors

Avatar

Dong-Hyeon Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunsook Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge