Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dana M. Blumenthal is active.

Publication


Featured researches published by Dana M. Blumenthal.


Nature | 2011

C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland

Jack A. Morgan; Daniel R. LeCain; Elise Pendall; Dana M. Blumenthal; Bruce A. Kimball; Yolima Carrillo; David G. Williams; Jana L. Heisler-White; Feike A. Dijkstra; Mark West

Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO2 may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO2-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO2 also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C4 grasses, rising CO2 should favour C3, or cool-season plants. Here we show in a semi-arid grassland that elevated CO2 can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO2 increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO2 enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO2 favoured C3 grasses and enhanced stand productivity, whereas warming favoured C4 grasses. Combined warming and CO2 enrichment stimulated above-ground growth of C4 grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO2-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.


Trends in Ecology and Evolution | 2010

Predicting plant invasions in an era of global change

Bethany A. Bradley; Dana M. Blumenthal; David S. Wilcove; Lewis H. Ziska

The relationship between plant invasions and global change is complex. Whereas some components of global change, such as rising CO2, usually promote invasion, other components, such as changing temperature and precipitation, can help or hinder plant invasion. Additionally, experimental studies and models suggest that invasive plants often respond unpredictably to multiple components of global change acting in concert. Such variability adds uncertainty to existing risk assessments and other predictive tools. Here, we review current knowledge about relationships between plant invasion and global change, and highlight research needed to improve forecasts of invasion risk. Managers should be prepared for both expansion and contraction of invasive plants due to global change, leading to increased risk or unprecedented opportunities for restoration.


Frontiers in Ecology and the Environment | 2012

Will extreme climatic events facilitate biological invasions

Jeffrey M. Diez; Carla M. D'Antonio; Jeffrey S. Dukes; Edwin D. Grosholz; Julian D. Olden; Cascade J. B. Sorte; Dana M. Blumenthal; Bethany A. Bradley; Regan Early; Ines Ibanez; Sierra J. Jones; Joshua J. Lawler; Luke P. Miller

Extreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introduction...


Proceedings of the National Academy of Sciences of the United States of America | 2009

Synergy between pathogen release and resource availability in plant invasion

Dana M. Blumenthal; Charles E. Mitchell

Why do some exotic plant species become invasive? Two common hypotheses, increased resource availability and enemy release, may more effectively explain invasion if they favor the same species, and therefore act in concert. This would be expected if plant species adapted to high levels of available resources in their native range are particularly susceptible to enemies, and therefore benefit most from a paucity of enemies in their new range. We tested this possibility by examining how resource adaptations influence pathogen richness and release among 243 European plant species naturalized in the United States. Plant species adapted to higher resource availability hosted more pathogen species in their native range. Plants from mesic environments hosted more fungi than plants from xeric environments, and plants from nitrogen-rich environments hosted more viruses than plants from nitrogen-poor environments. Furthermore, plants classified as competitors hosted more than 4 times as many fungi and viruses as did stress tolerators. Patterns of enemy release mirrored those of pathogen richness: competitors and species from mesic and nitrogen-rich environments were released from many pathogen species, while stress tolerators and species from xeric and nitrogen-poor environments were released from relatively few pathogen species. These results suggest that enemy release contributes most to invasion by fast-growing species adapted to resource-rich environments. Consequently, enemy release and increases in resource availability may act synergistically to favor exotic over native species.


Ecology Letters | 2013

Poised to Prosper? A Cross-system Comparison of Climate Change Effects on Native and Non-native Species Performance

Cascade J. B. Sorte; Ines Ibanez; Dana M. Blumenthal; Nicole Molinari; Luke P. Miller; Edwin D. Grosholz; Jeffrey M. Diez; Carla M. D'Antonio; Julian D. Olden; Sierra J. Jones; Jeffrey S. Dukes

Climate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non-native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta-analytical approach to broadly evaluate whether non-native species are poised to respond more positively than native species to future climatic conditions. We compiled a database of studies in aquatic and terrestrial ecosystems that reported performance measures of non-native (157 species) and co-occurring native species (204 species) under different temperature, CO(2) and precipitation conditions. Our analyses revealed that in terrestrial (primarily plant) systems, native and non-native species responded similarly to environmental changes. By contrast, in aquatic (primarily animal) systems, increases in temperature and CO(2) largely inhibited native species. There was a general trend towards stronger responses among non-native species, including enhanced positive responses to more favourable conditions and stronger negative responses to less favourable conditions. As climate change proceeds, aquatic systems may be particularly vulnerable to invasion. Across systems, there could be a higher risk of invasion at sites becoming more climatically hospitable, whereas sites shifting towards harsher conditions may become more resistant to invasions.


Frontiers in Ecology and the Environment | 2012

Global change, global trade, and the next wave of plant invasions

Bethany A. Bradley; Dana M. Blumenthal; Regan Early; Edwin D. Grosholz; Joshua J. Lawler; Luke P. Miller; Cascade J. B. Sorte; Carla M. D'Antonio; Jeffrey M. Diez; Jeffrey S. Dukes; Ines Ibanez; Julian D. Olden

Many non-native plants in the US have become problematic invaders of native and managed ecosystems, but a new generation of invasive species may be at our doorstep. Here, we review trends in the horticultural trade and invasion patterns of previously introduced species and show that novel species introductions from emerging horticultural trade partners are likely to rapidly increase invasion risk. At the same time, climate change and water restrictions are increasing demand for new types of species adapted to warm and dry environments. This confluence of forces could expose the US to a range of new invasive species, including many from tropical and semiarid Africa as well as the Middle East. Risk assessment strategies have proven successful elsewhere at identifying and preventing invasions, although some modifications are needed to address emerging threats. Now is the time to implement horticulture import screening measures to prevent this new wave of plant invasions.


New Phytologist | 2010

Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland

Feike A. Dijkstra; Dana M. Blumenthal; Jack A. Morgan; Elise Pendall; Yolima Carrillo; R. F. Follett

SUMMARY *Simulation models indicate that the nitrogen (N) cycle plays a key role in how other ecosystem processes such as plant productivity and carbon (C) sequestration respond to elevated CO(2) and warming. However, combined effects of elevated CO(2) and warming on N cycling have rarely been tested in the field. *Here, we studied N cycling under ambient and elevated CO(2) concentrations (600 micromol mol(-1)), and ambient and elevated temperature (1.5 : 3.0 degrees C warmer day:night) in a full factorial semiarid grassland field experiment in Wyoming, USA. We measured soil inorganic N, plant and microbial N pool sizes and NO(3)(-) uptake (using a (15)N tracer). *Soil inorganic N significantly decreased under elevated CO(2), probably because of increased microbial N immobilization, while soil inorganic N and plant N pool sizes significantly increased with warming, probably because of increased N supply. We observed no CO(2 )x warming interaction effects on soil inorganic N, N pool sizes or NO(3)(-) uptake in plants and microbes. *Our results indicate a more closed N cycle under elevated CO(2) and a more open N cycle with warming, which could affect long-term N retention, plant productivity, and C sequestration in this semiarid grassland.


Nature Communications | 2016

Global threats from invasive alien species in the twenty-first century and national response capacities

Regan Early; Bethany A. Bradley; Jeffrey S. Dukes; Joshua J. Lawler; Julian D. Olden; Dana M. Blumenthal; Patrick Gonzalez; Edwin D. Grosholz; Ines Ibanez; Luke P. Miller; Cascade J. B. Sorte; Andrew J. Tatem

Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion.


Nature plants | 2015

Grassland productivity limited by multiple nutrients

Philip A. Fay; Suzanne M. Prober; W. Stanley Harpole; Johannes M. H. Knops; Jonathan D. Bakker; Elizabeth T. Borer; Eric M. Lind; Andrew S. MacDougall; Eric W. Seabloom; Peter D. Wragg; Peter B. Adler; Dana M. Blumenthal; Yvonne M. Buckley; Chengjin Chu; Elsa E. Cleland; Scott L. Collins; Kendi F. Davies; Guozhen Du; Xiaohui Feng; Jennifer Firn; Daniel S. Gruner; Nicole Hagenah; Yann Hautier; Robert W. Heckman; Virginia L. Jin; Kevin P. Kirkman; Julia A. Klein; Laura M. Ladwig; Qi Li; Rebecca L. McCulley

Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4–8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.


Ecology Letters | 2010

Controls on pathogen species richness in plants' introduced and native ranges: roles of residence time, range size and host traits.

Charles E. Mitchell; Dana M. Blumenthal; Vojtěch Jarošík; Emily E. Puckett; Petr Pyšek

Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts’ native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their native European range and introduced North American range. Hosts introduced 400 years ago supported six times more pathogens than those introduced 40 years ago. In hosts’ native range, pathogen richness was greater on hosts occurring in more habitat types, with a history of agricultural use and adapted to greater resource supplies. In hosts’ introduced range, pathogen richness was correlated with host geographic range size, agricultural use and time since introduction, but not any measured biological traits. Introduced species have accumulated pathogens at rates that are slow relative to most ecological processes, and contingent on geographic and historic circumstance.

Collaboration


Dive into the Dana M. Blumenthal's collaboration.

Top Co-Authors

Avatar

Jack A. Morgan

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. LeCain

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin D. Derner

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

David J. Augustine

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Lind

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge