Dana Ries
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dana Ries.
Microbial Pathogenesis | 1987
Stanley Perlman; R. Schelper; E. Bolger; Dana Ries
Abstract The presence of maternal antibodies protected suckling C57BL/6 mice from the clinical manifestations of the acute encephalomyelitis caused by mouse hepatitis virus, strain JHM (MHV-JHM), a coronavirus, even though histological evidence of encephalomyelitis was found at early times after inoculation. 100% of infected suckling mice developed a fatal disease in the absence of maternal antibody. By 14 days after inoculation, the brains of all antibody-protected mice examined were nearly normal on histological examination. At 3–8 weeks post-inoculation, approximately 40% of the antibody-protected mice developed a neurological disease characterized by hindlimb paralysis and wasting. Evidence of inflammation and demyelination was apparent in the spinal cord and brainstem. The mice that remained asymptomatic at this time showed few signs of inflammation and none developed clinical disease over the following 9 months. Viral antigen could be detected in most of the mice examined at all times after inoculation, whether symptomatic or not, and was particularly evident in the animals with hindlimb paralysis. MHV-JHM could be consistently cultured from the mice with hindlimb paralysis. These results show that maternal immune factors can completely protect susceptible mice from the acute, fatal, clinical encephalomyelitis caused by MHV-JHM, but cannot prevent the establishment of a latent state and subsequent development of virus-induced, clinically evident, demyelinating disease. This model will be useful for studying the virus and host factors important for the development of MHV-JHM latency and subsequent virus-induced demyelination.
Microbial Pathogenesis | 1987
Stanley Perlman; Dana Ries
Abstract Mouse hepatitis virus, strain JHM (MHV-JHM), causes a late onset, clinically apparent, demyelinating encephalomyelitis in 40% of suckling C57BL/6 mice born to immunized dams. Suckling mice born to unimmunized dams rapidly succumb to an acute encephalomyelitis. MHV-JHM can be isolated from the brains and spinal cords of maternal antibody-protected mice when the late onset disease becomes clinically apparent, showing that the virus must be present in these mice when they are still asymptomatic. To determine which cells of the central nervous system (CNS) were potential reservoirs for the virus during the asymptomatic period, tissue sections were assayed simultaneously by immunoperoxidase and immunofluorescence staining for the presence of viral antigen and for glial fibrillary acidic protein (GFAP), a marker for astrocytes.2 The results indicate that 20% (range 0–52%) of the MHV-JHM infected cells in asymptomatic mice were astrocytes. In mice symptomatic with late onset hindlimb paralysis, a higher percentage of infected cells were astrocytes. These results indicate that astrocytes are a target cell in both symptomatic and asymptomatic mice persistently infected with MHV-JHM, and suggest that the astrocyte is a potential cellular reservoir for MHV-JHM in asymptomatic mice.
American Journal of Physiology-lung Cellular and Molecular Physiology | 1999
Michael C. Winter; Anant Kamath; Dana Ries; Sandra S. Shasby; Yih-Tai Chen; D. Michael Shasby
We tested the hypothesis that histamine alters the focal apposition of endothelial cells by acting on sites of cadherin-mediated cell-cell adhesion. Focal apposition was measured as the impedance of a cell-covered electrode, which was partitioned into a cell-matrix resistance, a cell-cell resistance, and membrane capacitance. Histamine causes an immediate, short-lived decrease in the impedance of an electrode covered with human umbilical vein endothelial (HUVE) cells. ECV304 cells are a line of spontaneously transformed HUVE cells that do not express the endothelial cadherin, cadherin-5. Histamine increased ECV304 cell calcium to 600 nM. Histamine did not increase myosin light chain phosphorylation of control or transfected ECV304 cells. ECV304 cells transfected with either E-cadherin or cadherin-5 on a dexamethasone-responsive plasmid (pLKneo) increased their cell-cell resistance when stimulated with dexamethasone, whereas ECV304 cells transfected with pLKneo-lacZ did not. Histamine did not affect the impedance of ECV304 cells transfected with pLKneo-lacZ. In contrast, histamine decreased the cell-cell resistance of ECV304 cells transfected with either pLKneo-E-cadherin or pLKneo-cadherin-5. From these data, we conclude that histamine acts on sites of cadherin-mediated cell-cell apposition.We tested the hypothesis that histamine alters the focal apposition of endothelial cells by acting on sites of cadherin-mediated cell-cell adhesion. Focal apposition was measured as the impedance of a cell-covered electrode, which was partitioned into a cell-matrix resistance, a cell-cell resistance, and membrane capacitance. Histamine causes an immediate, short-lived decrease in the impedance of an electrode covered with human umbilical vein endothelial (HUVE) cells. ECV304 cells are a line of spontaneously transformed HUVE cells that do not express the endothelial cadherin, cadherin-5. Histamine increased ECV304 cell calcium to 600 nM. Histamine did not increase myosin light chain phosphorylation of control or transfected ECV304 cells. ECV304 cells transfected with either E-cadherin or cadherin-5 on a dexamethasone-responsive plasmid (pLKneo) increased their cell-cell resistance when stimulated with dexamethasone, whereas ECV304 cells transfected with pLKneo-lacZ did not. Histamine did not affect the impedance of ECV304 cells transfected with pLKneo-lacZ. In contrast, histamine decreased the cell-cell resistance of ECV304 cells transfected with either pLKneo-E-cadherin or pLKneo-cadherin-5. From these data, we conclude that histamine acts on sites of cadherin-mediated cell-cell apposition.
Virus Research | 1986
Stanley Perlman; Dana Ries; Eric Bolger; Chang Lung-Ji; C. Martin Stoltzfus
Abstract We have found that genomic RNA synthesis is inhibited by cycloheximide in cells infected with mouse hepatitis virus, strain A59 (MHV-A59), in agreement with previously published results (Sawicki S.G. and Sawicki D.L. (1986) J. Virol. 57, 328–334). In the present study, the fate of the residual genomic RNA synthesized in the presence of cycloheximide was determined. Nearly all of the genomic RNA synthesized in the presence of drug was incorporated into nucleocapsid structures, suggesting that even in the absence of protein synthesis, genomic RNA synthesis and encapsidation are coupled in MHV-infected cells. Sufficient free nucleocapsid N protein was available for this purpose, since the pool of soluble N protein was determined to decay with a half-life of approximately one hour. Negative strand RNA is the template for the synthesis of both genomic and subgenomic positive strand RNA, and would be predicted to accumulate primarily during the early phases of the lytic cycle. In agreement with this prediction, negative strand RNA accumulated during the first 5–6 h of infection, with little additional accumulation occurring over the next 2.5 h. In marked contrast, positive strand RNA increased 5–6-fold over the same 2.5 h period. These results, taken in conjunction with published data, suggest that negative strand RNA is synthesized during the early period of the infectious cycle and is stable in infected cells and also suggest that treatment with cycloheximide at late times does not inhibit positive strand RNA synthesis indirectly by blocking the formation of negative strand templates.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2002
D. Michael Shasby; Dana Ries; Sandra S. Shasby; Michael C. Winter
American Journal of Physiology-lung Cellular and Molecular Physiology | 2006
Michael C. Winter; Sandra S. Shasby; Dana Ries; D. Michael Shasby
Journal of Applied Physiology | 2003
Joseph Zabner; Michael C. Winter; Katherine J. D. A. Excoffon; David A. Stoltz; Dana Ries; Sandra S. Shasby; Michael Shasby
American Journal of Physiology-lung Cellular and Molecular Physiology | 2004
Michael C. Winter; Sandra S. Shasby; Dana Ries; D. Michael Shasby
Chest | 2003
Joseph Zabner; Michael C. Winter; Sandra S. Shasby; Dana Ries; D. Michael Shasby
Archive | 2015
Dana Ries; Sandra S. Shasby; Michael Shasby Joseph Zabner; Michael C. Winter; Katherine J. D. Ashbourne; Andrea N. Flynn; Omar A. Itani; Thomas O. Moninger; Michael J. Welsh; Viswanathan Natarajan; Yutong Zhao; Yanlin Su; Peter V. Usatyuk; Paul Kogut; Julian Solway; Julie Diane; Ashbourne Excoffon; Abimbola Olayinka Kolawole; Priyanka Sharma; Kyle Joseph Edward Lewis