Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dandan Huang is active.

Publication


Featured researches published by Dandan Huang.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2012

Electroencephalography (EEG)-Based Brain–Computer Interface (BCI): A 2-D Virtual Wheelchair Control Based on Event-Related Desynchronization/Synchronization and State Control

Dandan Huang; Kai Qian; Ding-Yu Fei; Wenchuan Jia; Xuedong Chen; Ou Bai

This study aims to propose an effective and practical paradigm for a brain-computer interface (BCI)-based 2-D virtual wheelchair control. The paradigm was based on the multi-class discrimination of spatiotemporally distinguishable phenomenon of event-related desynchronization/synchronization (ERD/ERS) in electroencephalogram signals associated with motor execution/imagery of right/left hand movement. Comparing with traditional method using ERD only, where bilateral ERDs appear during left/right hand mental tasks, the 2-D control exhibited high accuracy within a short time, as incorporating ERS into the paradigm hypothetically enhanced the spatiotemporal feature contrast of ERS versus ERD. We also expected users to experience ease of control by including a noncontrol state. In this study, the control command was sent discretely whereas the virtual wheelchair was moving continuously. We tested five healthy subjects in a single visit with two sessions, i.e., motor execution and motor imagery. Each session included a 20 min calibration and two sets of games that were less than 30 min. Average target hit rate was as high as 98.4% with motor imagery. Every subject achieved 100% hit rate in the second set of wheelchair control games. The average time to hit a target 10 m away was about 59 s, with 39 s for the best set. The superior control performance in subjects without intensive BCI training suggested a practical wheelchair control paradigm for BCI users.


Clinical Neurophysiology | 2011

Prediction of human voluntary movement before it occurs.

Ou Bai; Varun Rathi; Peter Lin; Dandan Huang; Harsha Battapady; Ding-Yu Fei; Logan Schneider; Elise Houdayer; Xuedong Chen; Mark Hallett

OBJECTIVE Human voluntary movement is associated with two changes in electroencephalography (EEG) that can be observed as early as 1.5 s prior to movement: slow DC potentials and frequency power shifts in the alpha and beta bands. Our goal was to determine whether and when we can reliably predict human natural movement BEFORE it occurs from EEG signals ONLINE IN REAL-TIME. METHODS We developed a computational algorithm to support online prediction. Seven healthy volunteers participated in this study and performed wrist extensions at their own pace. RESULTS The average online prediction time was 0.62±0.25 s before actual movement monitored by EMG signals. There were also predictions that occurred without subsequent actual movements, where subjects often reported that they were thinking about making a movement. CONCLUSION Human voluntary movement can be predicted before movement occurs. SIGNIFICANCE The successful prediction of human movement intention will provide further insight into how the brain prepares for movement, as well as the potential for direct cortical control of a device which may be faster than normal physical control.


Journal of Neural Engineering | 2009

Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control

Dandan Huang; Peter Lin; Ding-Yu Fei; Xuedong Chen; Ou Bai

This study aims to explore whether human intentions to move or cease to move right and left hands can be decoded from spatiotemporal features in non-invasive EEG in order to control a discrete two-dimensional cursor movement for a potential multidimensional brain-computer interface (BCI). Five naïve subjects performed either sustaining or stopping a motor task with time locking to a predefined time window by using motor execution with physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored. The performance of the proposed BCI was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the hand moved for both motor execution and motor imagery. Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the motor cortex provided the best detection of either sustained or ceased movement of the right or left hand. The offline classification of four motor tasks (sustain or cease to move right or left hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73% for motor imagery. The subjects participating in experiments with physical movement were able to complete the online game with motor execution at an average accuracy of 85.5 +/- 4.65%; the subjects participating in motor imagery study also completed the game successfully. The proposed BCI provides a new practical multidimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.


Clinical Neurophysiology | 2010

Towards a User-Friendly Brain-Computer Interface: Initial Tests in ALS and PLS Patients

Ou Bai; Peter Lin; Dandan Huang; Ding-Yu Fei; Mary Kay Floeter

OBJECTIVE Patients usually require long-term training for effective EEG-based brain-computer interface (BCI) control due to fatigue caused by the demands for focused attention during prolonged BCI operation. We intended to develop a user-friendly BCI requiring minimal training and less mental load. METHODS Testing of BCI performance was investigated in three patients with amyotrophic lateral sclerosis (ALS) and three patients with primary lateral sclerosis (PLS), who had no previous BCI experience. All patients performed binary control of cursor movement. One ALS patient and one PLS patient performed four-directional cursor control in a two-dimensional domain under a BCI paradigm associated with human natural motor behavior using motor execution and motor imagery. Subjects practiced for 5-10min and then participated in a multi-session study of either binary control or four-directional control including online BCI game over 1.5-2h in a single visit. RESULTS Event-related desynchronization and event-related synchronization in the beta band were observed in all patients during the production of voluntary movement either by motor execution or motor imagery. The online binary control of cursor movement was achieved with an average accuracy about 82.1+/-8.2% with motor execution and about 80% with motor imagery, whereas offline accuracy was achieved with 91.4+/-3.4% with motor execution and 83.3+/-8.9% with motor imagery after optimization. In addition, four-directional cursor control was achieved with an accuracy of 50-60% with motor execution and motor imagery. CONCLUSION Patients with ALS or PLS may achieve BCI control without extended training, and fatigue might be reduced during operation of a BCI associated with human natural motor behavior. SIGNIFICANCE The development of a user-friendly BCI will promote practical BCI applications in paralyzed patients.


2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) | 2011

Event-related desynchronization/ synchronization-based brain-computer interface towards volitional cursor control in a 2D center-out paradigm

Dandan Huang; Kai Qian; Simon Oxenham; Ding-Yu Fei; Ou Bai

To achieve reliable two-dimensional cursor control by noninvasive EEG-based brain-computer interface (BCI), users are typically required to receive long-term training to learn effective regulation of their brain rhythmic activities, and to maintain sustained attention during the operation. We proposed a two-dimensional BCI using event-related desynchronization and event-related synchronization associated with human natural behavior so that users no longer need long-term training or high mental loads to maintain concentration. In this study, we intended to investigate the performance of the proposed BCI associated with either physical movement or motor imagery with an online center-out cursor control paradigm. Genetic algorithm (GA)-based mahalanobis linear distance (MLD) classifier and decision tree classifier (DTC) were used in feature selection and classification and a model adaptation method was employed for better decoding of human movement intention from EEG activity. The results demonstrated effective control accuracy for this four-class classification: as high as 77.1% during online control with physical movement and 57.3% with motor imagery. This suggests that based on this preliminary testing, two-dimensional BCI control can be achieved without long-term training.


international conference of the ieee engineering in medicine and biology society | 2009

EEG-based online two-dimensional cursor control

Dandan Huang; Peter Lin; Ding-Yu Fei; Xuedong Chen; Ou Bai

This study aims to explore whether human intentions to move or cease to move right and left hands can provide four spatiotemporal patterns in single-trial non-invasive EEG signals to achieve a two-dimensional cursor control. Subjects performed motor tasks by either physical movement or motor imagery. Spatial filtering, temporal filtering, feature selection and classification methods were explored to support accurate computer pattern recognition. The performance was evaluated by both offline classification and online two-dimensional cursor control. Event-related desynchronization (ERD) and post-movement event-related synchronization (ERS) were observed on the contralateral hemisphere to the moving hand for both physical movement and motor imagery. The offline classification of four motor tasks provided 10-fold cross-validation accuracy as high as 88% for physical movement and 73% for motor imagery. Subjects participating in experiments with physical movement were able to complete the online game with the average accuracy of 85.5±4.65%; Subjects participating in motor imagery study also completed the game successfully. The proposed brain-computer interface (BCI) provided a new practical multi-dimensional method by noninvasive EEG signal associated with human natural behavior, which does not need long-term training.


international conference of the ieee engineering in medicine and biology society | 2012

Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot

Wenchuan Jia; Dandan Huang; Xin Luo; Huayan Pu; Xuedong Chen; Ou Bai

Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the users actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by users instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.


international conference of the ieee engineering in medicine and biology society | 2009

Single trial detection of human movement intentions from SAM-filtered MEG signals for a high performance two-dimensional BCI

Harsha Battapady; Peter Lin; Ding-Yu Fei; Dandan Huang; Ou Bai

The objective of this research is to explore whether a two-dimensional BCI can be achieved by reliably decoding single-trial magneto-encephalography (MEG) signal associated with sustaining or ceasing right and left hand movements. Seven naïve subjects participated in the study. Signals were recorded from 275-channel MEG and synthetic aperture magnetometry (SAM) was employed. The multi-class classification for four-directional control was evaluated offline from 10-fold cross-validation using direct-decision tree classifier and genetic algorithm based Mahalanobis linear distance. Beta band (15–30Hz) event-related desynchronization and event related synchronization were observed in right and left hand movement related motor areas for physical movements as well as motor imagery. The cross-validation accuracy for the proposed four-direction classification from SAM- filtered MEG signal was as high as 95–97% for physical movements and 86–87% for motor imagery. The high classification accuracy suggests that a reliable high performance two-dimensional BCI can be achieved from single trial detection of human natural movement intentions from SAM-filtered MEG signals, where user may not need extensive training.


intelligent robots and systems | 2012

Reliable planning and execution of a human-robot cooperative system based on noninvasive brain-computer interface with uncertainty

Wenchuan Jia; Dandan Huang; Ou Bai; Huayan Pu; Xin Luo; Xuedong Chen

A human-robot cooperative approach to reliable planning and execution is presented. The human-robot system consists of three components: human user, wheelchair robot and the noninvasive brain-computer interface (BCI) which can represent limit types of users intention patterns based on EEG signals, with insufficient decoding accuracy and time delay. To achieve efficient navigation and positioning under condition of decoding uncertainties of the BCI, three cooperative modes are proposed for specific situations based on trade-off of robots autonomy and users flexibility. The coding protocol in each mode is elucidated in detail, and strategies of mode switching are developed. To achieve continuous and smooth motion, a look-ahead visual feedback is applied, so that the user can adjust the intention and/or actively correct extraction error of the BCI before the robot reaches current path node, and consequently, reliable planning and execution are ensured. The effectiveness of the strategies is evaluated by simulations.


Biomedical Engineering and Computational Biology | 2010

An Event-Related Study for Dynamic Analysis of Corticomuscular Connectivity

Ou Bai; Dandan Huang; Peter Lin; Jinglong Wu; Xuedong Chen; Ding-Yu Fei

Corticomuscular coupling estimated by EEG-EMG coherence may reveal functional cortical driving of peripheral muscular activity. EEG-EMG coherence in the beta band (15–30 Hz) has been extensively studied under isometric muscle contraction tasks. We attempted to study the time-course of corticomuscular connectivity under a dynamic target tracking task. A new device was developed for the real-time measurement of dynamic force created by pinching thumb and index fingers. Four healthy subjects who participated in this study were asked to track visual targets with the feedback forces. Spectral parameters using FFT and complex wavelet were explored for reliable estimation of event-related coherence and EEG-EMG correlogram for representing corticomuscular connectivity. Clearly distinguishable FFT-based coherence and cross-correlogram during the visual target tracking were observed with appropriate hyper-parameters for spectral estimation. The system design and the exploration of signal processing methods in this study supports further exploration of corticomuscular connectivity associated with human motor control.

Collaboration


Dive into the Dandan Huang's collaboration.

Top Co-Authors

Avatar

Ou Bai

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Ding-Yu Fei

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Xuedong Chen

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Lin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Qian

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Luo

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Harsha Battapady

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge