Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dandan Tang is active.

Publication


Featured researches published by Dandan Tang.


PLOS ONE | 2013

The Neural Dynamics of Conflict Adaptation within a Look-to-Do Transition

Dandan Tang; Li Hu; Hong Li; Qinglin Zhang; Antao Chen

Background For optimal performance in conflict situations, conflict adaptation (conflict detection and adjustment) is necessary. However, the neural dynamics of conflict adaptation is still unclear. Methods In the present study, behavioral and electroencephalography (EEG) data were recorded from seventeen healthy participants during performance of a color-word Stroop task with a novel look-to-do transition. Within this transition, participants looked at the Stroop stimuli but no responses were required in the ‘look’ trials; or made manual responses to the Stroop stimuli in the ‘do’ trials. Results In the ‘look’ trials, the amplitude modulation of N450 occurred exclusively in the right-frontal region. Subsequently, the amplitude modulation of sustained potential (SP) emerged in the posterior parietal and right-frontal regions. A significantly positive correlation between the modulation of reconfiguration in the ‘look’ trials and the behavioral conflict adaptation in the ‘do’ trials was observed. Specially, a stronger information flow from right-frontal region to posterior parietal region in the beta band was observed for incongruent condition than for congruent condition. In the ‘do’ trials, the conflict of ‘look’ trials enhanced the amplitude modulations of N450 in the right-frontal and posterior parietal regions, but decreased the amplitude modulations of SP in these regions. Uniquely, a stronger information flow from centro-parietal region to right-frontal region in the theta band was observed for iI condition than for cI condition. Conclusion All these findings showed that top-down conflict adaptation is implemented by: (1) enhancing the sensitivity to conflict detection and the adaptation to conflict resolution; (2) modulating the effective connectivity between parietal region and right-frontal region.


Neuroscience | 2014

Concurrent working memory task decreases the Stroop interference effect as indexed by the decreased theta oscillations.

Yuanfang Zhao; Dandan Tang; Li Hu; Li Zhang; Glenn Hitchman; Lijun Wang; Antao Chen

Working memory (WM) tasks may increase or decrease the interference effect of concurrently performed cognitive control tasks. However, the neural oscillatory correlates of this modulation effect of WM on the Stroop task are still largely unknown. In the present study, behavioral and electroencephalographic (EEG) data were recorded from 32 healthy participants during their performance of the single Stroop task and the same task with a concurrent WM task. We observed that the Stroop interference effect represented in both response times (RTs) and theta-band event-related spectral perturbation (ERSP) magnitude reduced under the dual-task condition compared with the single-task condition. The reduction of interference in theta-band ERSP was further positively correlated with interference reduction in RTs, and was mainly explained by the source in the left middle frontal gyrus. In conclusion, the present study suggests that the effect of concurrent WM tasks on the reduction of the Stroop interference effect can be indexed by EEG oscillations in theta-band rhythm in the centro-frontal regions and this modulation was mediated by the reduced cognitive control under the concurrent WM task.


PLOS ONE | 2013

Training Reveals the Sources of Stroop and Flanker Interference Effects

Antao Chen; Dandan Tang; Xuefei Chen

In the field of cognitive control, dimensional overlap and pathway automaticity are generally believed to be critical for the generation of congruency effects. However, their specific roles in the generation of congruency effects are unclear. In two experiments, with the 4∶2 mapping design, we investigated this issue by examining the training-related effects on congruency effects (the Stroop interference effect and the Flanker interference effect in Experiments 1 and 2, respectively) normally expressed as incongruent minus congruent difference and on their subcomponents (the stimulus interference and response interference). Experiment 1 revealed that the stimulus interference in the Stroop task, wherein the task-relevant (printed color of word) and the task-irrelevant (semantics of word) dimensions of the stimuli were processed in different pathways, was present during early training but was virtually eliminated at the late stage of training. This indicates that the two dimensions overlap at the early stage but separate at the late stage. In contrast, Experiment 2 showed that the response interference in a variant of the Flanker task, wherein the task-relevant (central color word printed in black font) and the task-irrelevant (flanking color words printed in black font) dimensions of the stimuli were processed in the same pathway, was enhanced after training. This indicates that the enhanced automaticity of irrelevant-dimension processing induces stronger response competition, which therefore results in the larger response interference. Taken together, the present study demonstrates that (1) dimensional overlap is necessary for the generation of congruency effects, (2) pathway automaticity can affect the size of congruency effects, and (3) training enhances the degree of automatic processing in a given pathway.


Scientific Reports | 2015

Disentangling the impacts of outcome valence and outcome frequency on the post-error slowing

Lijun Wang; Dandan Tang; Yuanfang Zhao; Glenn Hitchman; Shanshan Wu; Jinfeng Tan; Antao Chen

Post-error slowing (PES) reflects efficient outcome monitoring, manifested as slower reaction time after errors. Cognitive control account assumes that PES depends on error information, whereas orienting account posits that it depends on error frequency. This raises the question how the outcome valence and outcome frequency separably influence the generation of PES. To address this issue, we varied the probability of observation errors (50/50 and 20/80, correct/error) the “partner” committed by employing an observation-execution task and investigated the corresponding behavioral and neural effects. On each trial, participants first viewed the outcome of a flanker-run that was supposedly performed by a ‘partner’, and then performed a flanker-run themselves afterwards. We observed PES in the two error rate conditions. However, electroencephalographic data suggested error-related potentials (oERN and oPe) and rhythmic oscillation associated with attentional process (alpha band) were respectively sensitive to outcome valence and outcome frequency. Importantly, oERN amplitude was positively correlated with PES. Taken together, these findings support the assumption of the cognitive control account, suggesting that outcome valence and outcome frequency are both involved in PES. Moreover, the generation of PES is indexed by oERN, whereas the modulation of PES size could be reflected on the alpha band.


Scientific Reports | 2015

The neural dynamic mechanisms of asymmetric switch costs in a combined Stroop-task-switching paradigm

Shanshan Wu; Glenn Hitchman; Jinfeng Tan; Yuanfang Zhao; Dandan Tang; Lijun Wang; Antao Chen

Switch costs have been constantly found asymmetrical when switching between two tasks of unequal dominance. We used a combined Stroop-task-switching paradigm and recorded electroencephalographic (EEG) signals to explore the neural mechanism underlying the phenomenon of asymmetrical switch costs. The results revealed that a fronto-central N2 component demonstrated greater negativity in word switch (cW) trials relative to word repeat (wW) trials, and both First P3 and P3b components over the parieto-central region exhibited greater positivity in color switch (wC) trials relative to color repeat (cC) trials, whereas a contrasting switch-related fronto-central SP effect was found to have an opposite pattern for each task. Moreover, the time-frequency analysis showed a right-frontal lower alpha band (9-11 Hz) modulation in the word task, whereas a fronto-central upper alpha band (11-13 Hz) modulation was exclusively found in the color task. These results provide evidence for dissociable neural processes, which are related to inhibitory control and endogenous control, contributing to the generation of asymmetrical switch costs.


PLOS ONE | 2015

Predicting stroop effect from spontaneous neuronal activity: a study of regional homogeneity.

Congcong Liu; Zhencai Chen; Ting Wang; Dandan Tang; Glenn Hitchman; Jiangzhou Sun; Xiaoyue Zhao; Lijun Wang; Antao Chen

The Stroop effect is one of the most robust and well-studied phenomena in cognitive psychology and cognitive neuroscience. However, little is known about the relationship between intrinsic brain activity and the individual differences of this effect. In the present study, we explored this issue by examining whether resting-state functional magnetic resonance imaging (rs-fMRI) signals could predict individual differences in the Stroop effect of healthy individuals. A partial correlation analysis was calculated to examine the relationship between regional homogeneity (ReHo) and Stroop effect size, while controlling for age, sex, and framewise displacement (FD). The results showed positive correlations in the left inferior frontal gyrus (LIFG), the left insula, the ventral anterior cingulate cortex (vACC), and the medial frontal gyrus (MFG), and negative correlation in the left precentral gyrus (LPG). These results indicate the possible influences of the LIFG, the left insula, and the LPG on the efficiency of cognitive control, and demonstrate that the key nodes of default mode network (DMN) may be important in goal-directed behavior and/or mental effort during cognitive control tasks.


Frontiers in Human Neuroscience | 2015

Frontal and occipital-parietal alpha oscillations distinguish between stimulus conflict and response conflict

Dandan Tang; Li Hu; Yi Lei; Hong Li; Antao Chen

Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations.


PLOS ONE | 2014

The Task-Relevant Attribute Representation Can Mediate the Simon Effect

Dandan Tang; Xiao Zhao; Antao Chen

Researchers have previously suggested a working memory (WM) account of spatial codes, and based on this suggestion, the present study carries out three experiments to investigate how the task-relevant attribute representation (verbal or visual) in the typical Simon task affects the Simon effect. Experiment 1 compared the Simon effect between the between- and within-category color conditions, which required subjects to discriminate between red and blue stimuli (presumed to be represented by verbal WM codes because it was easy and fast to name the colors verbally) and to discriminate between two similar green stimuli (presumed to be represented by visual WM codes because it was hard and time-consuming to name the colors verbally), respectively. The results revealed a reliable Simon effect that only occurs in the between-category condition. Experiment 2 assessed the Simon effect by requiring subjects to discriminate between two different isosceles trapezoids (within-category shapes) and to discriminate isosceles trapezoid from rectangle (between-category shapes), and the results replicated and expanded the findings of Experiment 1. In Experiment 3, subjects were required to perform both tasks from Experiment 1. Wherein, in Experiment 3A, the between-category task preceded the within-category task; in Experiment 3B, the task order was opposite. The results showed the reliable Simon effect when subjects represented the task-relevant stimulus attributes by verbal WM encoding. In addition, the response times (RTs) distribution analysis for both the between- and within-category conditions of Experiments 3A and 3B showed decreased Simon effect with the RTs lengthened. Altogether, although the present results are consistent with the temporal coding account, we put forth that the Simon effect also depends on the verbal WM representation of task-relevant stimulus attribute.


Biological Psychology | 2013

The neural oscillations of conflict adaptation in the human frontal region.

Dandan Tang; Li Hu; Antao Chen


International Journal of Psychophysiology | 2015

Night or darkness, which intensifies the feeling of fear?

Yadan Li; Wenjuan Ma; Qin Kang; Lei Qiao; Dandan Tang; Jiang Qiu; Qinglin Zhang; Hong Li

Collaboration


Dive into the Dandan Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Hu

Southwest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge