Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dandan Zhang is active.

Publication


Featured researches published by Dandan Zhang.


Scientific Reports | 2015

Effects of let-7b and TLX on the proliferation and differentiation of retinal progenitor cells in vitro

Ni Ni; Dandan Zhang; Qing Xie; Junzhao Chen; Zi Wang; Yuan Deng; Xuyang Wen; Mengyu Zhu; Jing Ji; Xianqun Fan; Min Luo; Ping Gu

MicroRNAs manifest significant functions in brain neural stem cell (NSC) self-renewal and differentiation through the post-transcriptional regulation of neurogenesis genes. Let-7b is expressed in the mammalian brain and regulates NSC proliferation and differentiation by targeting the nuclear receptor TLX, which is an essential regulator of NSC self-renewal. Whether let-7b and TLX act as important regulators in retinal progenitor cell (RPC) proliferation and differentiation remains unknown. Here, our data show that let-7b and TLX play important roles in controlling RPC fate determination in vitro. Let-7b suppresses TLX expression to negatively regulate RPC proliferation and accelerate the neuronal and glial differentiation of RPCs. The overexpression of let-7b downregulates TLX levels in RPCs, leading to reduced RPC proliferation and increased neuronal and glial differentiation, whereas antisense knockdown of let-7b produces robust TLX expression,enhanced RPC proliferation and decreased differentiation. Moreover, the inhibition of endogenous TLX by small interfering RNA suppresses RPC proliferation and promotes RPC differentiation. Furthermore, overexpression of TLX rescues let-7b-induced proliferation deficiency and weakens the RPC differentiation enhancement caused by let-7b alone. These results suggest that let-7b, by forming a negative feedback loop with TLX, provides a novel model to regulate the proliferation and differentiation of retinal progenitors in vitro.


Scientific Reports | 2015

Electrospun SF/PLCL nanofibrous membrane: a potential scaffold for retinal progenitor cell proliferation and differentiation

Dandan Zhang; Ni Ni; Junzhao Chen; Qinke Yao; Bingqiao Shen; Yi Zhang; Mengyu Zhu; Zi Wang; Jing Ruan; Jing Wang; Xiumei Mo; Wodong Shi; Jing Ji; Xianqun Fan; Ping Gu

Biocompatible polymer scaffolds are promising as potential carriers for the delivery of retinal progenitor cells (RPCs) in cell replacement therapy for the repair of damaged or diseased retinas. The primary goal of the present study was to investigate the effects of blended electrospun nanofibrous membranes of silk fibroin (SF) and poly(L-lactic acid-co-ε-caprolactone) (PLCL), a novel scaffold, on the biological behaviour of RPCs in vitro. To assess the cell-scaffold interaction, RPCs were cultured on SF/PLCL scaffolds for indicated durations. Our data revealed that all the SF/PLCL scaffolds were thoroughly cytocompatible, and the SF:PLCL (1:1) scaffolds yielded the best RPC growth. The in vitro proliferation assays showed that RPCs proliferated more quickly on the SF:PLCL (1:1) than on the other scaffolds and the control. Quantitative polymerase chain reaction (qPCR) and immunocytochemistry analyses demonstrated that RPCs grown on the SF:PLCL (1:1) scaffolds preferentially differentiated toward retinal neurons, including, most interestingly, photoreceptors. In summary, we demonstrated that the SF:PLCL (1:1) scaffolds can not only markedly promote RPC proliferation with cytocompatibility for RPC growth but also robustly enhance RPCs’ differentiation toward specific retinal neurons of interest in vitro, suggesting that SF:PLCL (1:1) scaffolds may have potential applications in retinal cell replacement therapy in the future.


International Journal of Nanomedicine | 2016

Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

Zi Wang; Ming Lin; Qing Xie; Hao Sun; Yazhuo Huang; Dandan Zhang; Zhang Yu; Xiaoping Bi; Junzhao Chen; Jing Wang; Wodong Shi; Ping Gu; Xianqun Fan

Background Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration. Methods Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated. Results The SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold. Conclusion The SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in vitro and further promoted new bone formation in vivo, suggesting that the SF/PLCL (50/50) nanofibrous scaffold holds great potential in bone tissue regeneration.


Cell Death and Disease | 2015

NFAT4-dependent miR-324-5p regulates mitochondrial morphology and cardiomyocyte cell death by targeting Mtfr1.

Kun Wang; Dandan Zhang; Long B; An T; Jiyan Zhang; Zhou Ly; Liu Cy; Li Pf

Emerging evidence suggest that the abnormal mitochondrial fission participates in pathogenesis of cardiac diseases, including myocardial infarction and heart failure. However, the molecular components regulating mitochondrial network in heart remain largely unidentified. Here we report that NFAT4, miR-324-5p and mitochondrial fission regulator 1 (Mtfr1) function in one signaling axis that regulates mitochondrial morphology and cardiomyocyte cell death. Knocking down Mtfr1 suppresses mitochondrial fission, apoptosis and myocardial infarction. Mtfr1 is a direct target of miR-324-5p, and miR-324-5p attenuates mitochondrial fission, cardiomyocyte apoptosis and myocardial infarction by suppressing Mtfr1 translation. Finally, we show that transcription factor NFAT4 inhibits miR-324-5p expression. Knockdown of NFAT4 suppresses mitochondrial fission and protects cardiomyocyte from apoptosis and myocardial infarction. Our study defines the NFAT4/ miR-324-5p/Mtfr1 axis, which participates in the regulation of mitochondrial fission and cardiomyocyte apoptosis, and suggests potential new treatment avenues for cardiac diseases.


Journal of Translational Medicine | 2017

Progress of stem/progenitor cell-based therapy for retinal degeneration

Zhimin Tang; Yi Zhang; Yuyao Wang; Dandan Zhang; Bingqiao Shen; Min Luo; Ping Gu

Retinal degeneration (RD), such as age-related macular degeneration (AMD) and retinitis pigmentosa, is one of the leading causes of blindness. Presently, no satisfactory therapeutic options are available for these diseases principally because the retina and retinal pigmented epithelium (RPE) do not regenerate, although wet AMD can be prevented from further progression by anti-vascular endothelial growth factor therapy. Nevertheless, stem/progenitor cell approaches exhibit enormous potential for RD treatment using strategies mainly aimed at the rescue and replacement of photoreceptors and RPE. The sources of stem/progenitor cells are classified into two broad categories in this review, which are (1) ocular-derived progenitor cells, such as retinal progenitor cells, and (2) non-ocular-derived stem cells, including embryonic stem cells, induced pluripotent stem cells, and mesenchymal stromal cells. Here, we discuss in detail the progress in the study of four predominant stem/progenitor cell types used in animal models of RD. A short overview of clinical trials involving the stem/progenitor cells is also presented. Currently, stem/progenitor cell therapies for RD still have some drawbacks such as inhibited proliferation and/or differentiation in vitro (with the exception of the RPE) and limited long-term survival and function of grafts in vivo. Despite these challenges, stem/progenitor cells represent the most promising strategy for RD treatment in the near future.


Oncotarget | 2017

miR-29a regulates the proliferation and differentiation of retinal progenitors by targeting Rbm8a

Yi Zhang; Bingqiao Shen; Dandan Zhang; Yuyao Wang; Zhimin Tang; Ni Ni; Xiaoliang Jin; Min Luo; Hao Sun; Ping Gu

During development, tight regulation of the expansion of retinal progenitor cells (RPCs) and their differentiation into neuronal and glial cells is important for retinal formation and function. Our study demonstrated that microRNA (miR)-29a modulated the proliferation and differentiation of RPCs by suppressing RBM8A (one of the factors in the exon junction complex). Particularly, overexpression of miR-29a reduced RPC proliferation but accelerated RPC differentiation. By contrast, reduction of endogenous miR-29a elicited the opposite effects. Overexpression of miR-29a repressed the translation of Rbm8a, thus negatively regulating RPC proliferation and promoting the neuronal and glial differentiation of RPCs, and knockdown of endogenous Rbm8a phenocopied the observed effects of miR-29a overexpression. Furthermore, a luciferase reporter assay showed that miR-29a directly interacted with the Rbm8a mRNA 3′UTR, which indicated that Rbm8a is the direct target of miR-29a. To further verify the result, co-overexpression of the Rbm8a 3′ UTR-wt (plasmids into which the Rbm8a 3′ UTR sequence had been introduced) and miR-29a in RPCs rescued the phenotype associated with miR-29a overexpression, reversing the promotion of differentiation and inhibition of proliferation. These results show a novel mechanism by which miR-29a regulates the proliferation and differentiation of RPCs through Rbm8a.


Journal of Cellular and Molecular Medicine | 2018

Betacellulin regulates the proliferation and differentiation of retinal progenitor cells in vitro

Dandan Zhang; Bingqiao Shen; Yi Zhang; Ni Ni; Yuyao Wang; Fan Xianqun; Hao Sun; Ping Gu

Retinal progenitor cells (RPCs) hold great potential for the treatment of retinal degenerative diseases. However, their proliferation capacity and differentiation potential towards specific retinal neurons are limited, which limit their future clinical applications. Thus, it is important to improve the RPCs’ ability to proliferate and differentiate. Currently, epidermal growth factor (EGF) is commonly used to stimulate RPC growth in vitro. In this study, we find that betacellulin (BTC), a member of the EGF family, plays important roles in the proliferation and differentiation of RPCs. Our results showed that BTC can significantly promote the proliferation of RPCs more efficiently than EGF. EGF stimulated RPC proliferation through the EGFR/ErbB2‐Erk pathway, while BTC stimulated RPC proliferation more powerfully through the EGFR/ErbB2/ErbB4‐Akt/Erk pathway. Meanwhile, under differentiated conditions, the BTC‐pre‐treated RPCs were preferentially differentiated into retinal neurons, including photoreceptors, one of the most important types of cells for retinal cell replacement therapy, compared to the EGF‐pre‐treated RPCs. In addition, knockdown of endogenous BTC expression can also obviously promote RPC differentiation into retinal neuronal cells. This data demonstrate that BTC plays important roles in promoting RPC proliferation and differentiation into retinal neurons. This study may provide new insights into the study of RPC proliferation and differentiation and make a step towards the application of RPCs in the treatment of retinal degenerative diseases.


Experimental and Therapeutic Medicine | 2017

Effects of RPE‑conditioned medium on the differentiation of hADSCs into RPE cells, and their proliferation and migration

Yi Zhang; Dandan Zhang; Wei Wei; Bingqiao Shen; Yuyao Wang; Yingjie Zhang; Yidan Zhang; Jing Ji; Hao Sun; Min Luo; Ping Gu

Age-related macular degeneration (AMD) is associated with the dysfunction and death of the retinal pigment epithelium (RPE). Recently, there has been increasing interest in stem cell-derived RPE cells for cell replacement therapies, such as those for AMD. The present study investigated whether RPE-conditioned medium (RPECM) could promote the differentiation of human adipose tissue-derived mesenchymal stromal cells (hADSCs) into RPE cells, and enhance the proliferation and migration of these cells. Reverse-transcription quantitative polymerase chain reaction analysis demonstrated that RPECM induced hADSCs to differentiate into cells expressing RPE markers, including retinoid isomerohydrolase (RPE65), cytokeratin (CK8) and Bestrophin, which were identified to be significantly upregulated by ~10-fold, 3.5-fold and 2.4-fold, respectively, compared with the control group [hADSCs cultured in ADSC-conditioned medium (ADSCCM)]. The immunocytochemistry and western blot analysis results demonstrated that the protein levels of RPE65, CK8 and Bestrophin were significantly increased in RPECM-treated hADSCs. In addition, Cell Counting Kit-8 analysis demonstrated that RPECM promoted the proliferation of induced cells. RPECM also increased the expression level of the cell proliferative marker Ki-67. Furthermore, to evaluate the migration potential, cell migration assays were performed. These assays demonstrated that following RPECM treatment hADSCs migrated more quickly compared with the control group. The results of the present study suggest that RPECM induces hADSCs to differentiate into RPE cells with higher proliferative and migratory potentials, which may aid in applications for hADSCs in RPE regenerative therapy.


Cytotherapy | 2018

Decellularized matrix of adipose-derived mesenchymal stromal cells enhanced retinal progenitor cell proliferation via the Akt/Erk pathway and neuronal differentiation

Jing Ji; Dandan Zhang; Wei Wei; Bingqiao Shen; Yi Zhang; Yuyao Wang; Zhimin Tang; Ni Ni; Hao Sun; Jiaqiang Liu; Xianqun Fan; Ping Gu

BACKGROUND AIMS Retinal progenitor cells (RPCs) are a promising cell therapy treatment for retinal degenerative diseases. However, problems with limited proliferation ability and differentiation preference toward glia rather than neurons restrict the clinical application of these RPCs. The extracellular matrix (ECM) has been recognized to provide an appropriate microenvironment to support stem cell adhesion and direct cell behaviors, such as self-renewal and differentiation. METHODS In this study, decellularized matrix of adipose-derived mesenchymal stromal cells (DMA) was manufactured using a chemical agent method (0.5% ammonium hydroxide Triton + 20 mmol/L NH4OH) in combination with a biological agent method (DNase solution), and the resulting DMA were evaluated by scanning electron microscopy (SEM) and immunocytochemistry. The effect of DMA on RPC proliferation and differentiation was evaluated by quantitative polymerase chain reaction, Western blot and immunocytochemistry analysis. RESULTS DMA was successfully fabricated, as demonstrated by SEM and immunocytochemistry. Compared with tissue culture plates, DMA may effectively enhance the proliferation of RPCs by activating Akt and Erk phosphorylation; when the two pathways were blocked, the promoting effect was reversed. Moreover, DMA promoted the differentiation of RPCs toward retinal neurons, especially rhodopsin- and recoverin-positive photoreceptors, which is the most interesting class of cells for retinal degeneration treatment. CONCLUSIONS These results indicate that DMA has important roles in governing RPC proliferation and differentiation and may contribute to the application of RPCs in treating retinal degenerative diseases.


Cell Death and Disease | 2018

REST, regulated by RA through miR-29a and the proteasome pathway, plays a crucial role in RPC proliferation and differentiation

Yuyao Wang; Dandan Zhang; Zhimin Tang; Yi Zhang; Huiqin Gao; Ni Ni; Bingqiao Shen; Hao Sun; Ping Gu

One of the primary obstacles in the application of retinal progenitor cells (RPCs) to the treatment of retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), is their limited ability to proliferate and differentiate into specific retinal neurons. In this study, we revealed that repressor element-1-silencing transcription factor (REST), whose expression could be transcriptionally and post-transcriptionally mediated by retinoic acid (RA, one isomeride of a vitamin A derivative used as a differentiation-inducing agent in many disease treatments), plays a pivotal role in the regulation of proliferation and differentiation of RPCs. Our results show that direct knockdown of endogenous REST reduced RPC proliferation but accelerated RPC differentiation toward retinal neurons, which phenocopied the observed effects of RA on RPCs. Further studies disclosed that the expression level of REST could be downregulated by RA not only through upregulating microRNA (miR)-29a, which directly interacted with the 3′-untranslated region (3′-UTR) of the REST mRNA, but also through promoting REST proteasomal degradation. These results show us a novel functional protein, REST, which regulates RPC proliferation and differentiation, can be mediated by RA. Understanding the mechanisms of REST and RA in RPC fate determination enlightens a promising future for the application of REST and RA in the treatment of retinal degeneration diseases.

Collaboration


Dive into the Dandan Zhang's collaboration.

Top Co-Authors

Avatar

Ping Gu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bingqiao Shen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ni Ni

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yuyao Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hao Sun

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xianqun Fan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jing Ji

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Min Luo

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhimin Tang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge