Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dane D. Jensen is active.

Publication


Featured researches published by Dane D. Jensen.


Gastroenterology | 2014

The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice

TinaMarie Lieu; Gihan Jayaweera; Peishen Zhao; Daniel P. Poole; Dane D. Jensen; Megan S. Grace; Peter McIntyre; Romke Bron; Yvette M. Wilson; Matteus Krappitz; Silke Haerteis; Christoph Korbmacher; Martin Steinhoff; Romina Nassini; Serena Materazzi; Pierangelo Geppetti; Carlos U. Corvera; Nigel W. Bunnett

BACKGROUND & AIMS Patients with cholestatic disease have increased systemic concentrations of bile acids (BAs) and profound pruritus. The G-protein-coupled BA receptor 1 TGR5 (encoded by GPBAR1) is expressed by primary sensory neurons; its activation induces neuronal hyperexcitability and scratching by unknown mechanisms. We investigated whether the transient receptor potential ankyrin 1 (TRPA1) is involved in BA-evoked, TGR5-dependent pruritus in mice. METHODS Co-expression of TGR5 and TRPA1 in cutaneous afferent neurons isolated from mice was analyzed by immunofluorescence, in situ hybridization, and single-cell polymerase chain reaction. TGR5-induced activation of TRPA1 was studied in in HEK293 cells, Xenopus laevis oocytes, and primary sensory neurons by measuring Ca(2+) signals. The contribution of TRPA1 to TGR5-induced release of pruritogenic neuropeptides, activation of spinal neurons, and scratching behavior were studied using TRPA1 antagonists or Trpa1(-/-) mice. RESULTS TGR5 and TRPA1 protein and messenger RNA were expressed by cutaneous afferent neurons. In HEK cells, oocytes, and neurons co-expressing TGR5 and TRPA1, BAs caused TGR5-dependent activation and sensitization of TRPA1 by mechanisms that required Gβγ, protein kinase C, and Ca(2+). Antagonists or deletion of TRPA1 prevented BA-stimulated release of the pruritogenic neuropeptides gastrin-releasing peptide and atrial natriuretic peptide B in the spinal cord. Disruption of Trpa1 in mice blocked BA-induced expression of Fos in spinal neurons and prevented BA-stimulated scratching. Spontaneous scratching was exacerbated in transgenic mice that overexpressed TRG5. Administration of a TRPA1 antagonist or the BA sequestrant colestipol, which lowered circulating levels of BAs, prevented exacerbated spontaneous scratching in TGR5 overexpressing mice. CONCLUSIONS BAs induce pruritus in mice by co-activation of TGR5 and TRPA1. Antagonists of TGR5 and TRPA1, or inhibitors of the signaling mechanism by which TGR5 activates TRPA1, might be developed for treatment of cholestatic pruritus.


Journal of Biological Chemistry | 2014

Cathepsin S Causes Inflammatory Pain via Biased Agonism of PAR2 and TRPV4

Peishen Zhao; TinaMarie Lieu; Nicholas Barlow; Matthew Metcalf; Nicholas A. Veldhuis; Dane D. Jensen; Martina Kocan; Silvia Sostegni; Silke Haerteis; Vera Baraznenok; Ian R. Henderson; Erik Lindström; Raquel Guerrero-Alba; Eduardo Valdez-Morales; Wolfgang Liedtke; Peter McIntyre; Stephen Vanner; Christoph Korbmacher; Nigel W. Bunnett

Background: Proteases trigger inflammation and pain by cleaving protease-activated receptors (PARs) at defined sites. Results: Cathepsin S (Cat-S) cleaved PAR2 at a unique site E56↓T57, leading to Gαs-mediated cAMP accumulation and TRPV4-dependent inflammation and pain. Conclusion: Cat-S is a biased agonist of PAR2- and TRPV4-dependent inflammation and pain. Significance: PARs integrate responses to diverse proteases. Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R36↓S37 and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E56↓T57, which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca2+, activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain.


Journal of Biological Chemistry | 2013

The Bile Acid Receptor TGR5 Does Not Interact with β-arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts

Dane D. Jensen; Cody B. Godfrey; Christian Niklas; Meritxell Canals; Martina Kocan; Daniel P. Poole; Jane E. Murphy; Farzad Alemi; Graeme S. Cottrell; Christoph Korbmacher; Nevin A. Lambert; Nigel W. Bunnett; Carlos U. Corvera

Background: The TGR5 bile acid receptor controls energy balance, inflammation, and digestion, but TGR5 signaling is poorly understood. Results: TGR5 does not interact with β-arrestins, internalize, or desensitize, but signals from plasma membrane rafts. Conclusion: TGR5 transmits sustained signals close to the cell surface. Significance: Understanding TGR5 signaling will facilitate design of TGR5 agonists for metabolic, inflammatory, and digestive disorders. TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.


Hepatology | 2016

Prognostic and mechanistic potential of progesterone sulfates in intrahepatic cholestasis of pregnancy and pruritus gravidarum

Shadi Abu-Hayyeh; Caroline Ovadia; TinaMarie Lieu; Dane D. Jensen; Jenny Chambers; Peter H. Dixon; Anita Lövgren-Sandblom; Ruth Bolier; Dagmar Tolenaars; Andreas E. Kremer; Argyro Syngelaki; Muna Noori; David J. Williams; Jose J.G. Marin; Maria J. Monte; Kypros H. Nicolaides; Ulrich Beuers; Ronald P. J. Oude-Elferink; Paul Seed; Lucy Chappell; Hanns-Ulrich Marschall; Nigel W. Bunnett; Catherine Williamson

A challenge in obstetrics is to distinguish pathological symptoms from those associated with normal changes of pregnancy, typified by the need to differentiate whether gestational pruritus of the skin is an early symptom of intrahepatic cholestasis of pregnancy (ICP) or due to benign pruritus gravidarum. ICP is characterized by raised serum bile acids and complicated by spontaneous preterm labor and stillbirth. A biomarker for ICP would be invaluable for early diagnosis and treatment and to enable its differentiation from other maternal diseases. Three progesterone sulfate compounds, whose concentrations have not previously been studied, were newly synthesized and assayed in the serum of three groups of ICP patients and found to be significantly higher in ICP at 9‐15 weeks of gestation and prior to symptom onset (group 1 cases/samples: ICP n = 35/80, uncomplicated pregnancy = 29/100), demonstrating that all three progesterone sulfates are prognostic for ICP. Concentrations of progesterone sulfates were associated with itch severity and, in combination with autotaxin, distinguished pregnant women with itch that would subsequently develop ICP from pruritus gravidarum (group 2: ICP n = 41, pruritus gravidarum n = 14). In a third group of first‐trimester samples all progesterone sulfates were significantly elevated in serum from low‐risk asymptomatic women who subsequently developed ICP (ICP/uncomplicated pregnancy n = 54/51). Finally, we show mechanistically that progesterone sulfates mediate itch by evoking a Tgr5‐dependent scratch response in mice. Conclusion: Our discovery that sulfated progesterone metabolites are a prognostic indicator for ICP will help predict onset of ICP and distinguish it from benign pruritus gravidarum, enabling targeted obstetric care to a high‐risk population. Delineation of a progesterone sulfate‐TGR5 pruritus axis identifies a therapeutic target for itch management in ICP. (Hepatology 2016;63:1287–1298)


Science Translational Medicine | 2017

Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief

Dane D. Jensen; TinaMarie Lieu; Michelle L. Halls; Nicholas A. Veldhuis; Wendy L. Imlach; Quynh N. Mai; Daniel P. Poole; Tim Quach; Luigi Aurelio; Joshua Conner; Carmen Klein Herenbrink; Nicholas Barlow; Jamie S. Simpson; Martin J. Scanlon; Bimbil Graham; Adam McCluskey; Phillip J. Robinson; Virginie Escriou; Romina Nassini; Serena Materazzi; Pierangelo Geppetti; Gareth A. Hicks; MacDonald J. Christie; Christopher J. H. Porter; Meritxell Canals; Nigel W. Bunnett

Therapeutic targeting of the neurokinin 1 receptor in endosomes provides efficacious and prolonged pain relief. Targeting the enemy within endosomes With opioid addiction on the rise, there is a great need for effective nonopioid approaches to treat pain. Jensen et al. examined the function of substance P neurokinin 1 receptor, which plays a role in the transmission of pain signals in the central nervous system. The authors demonstrated that endocytosis of this receptor is required for the transmission of pain signals. Although systemic inhibition of endocytosis would not be feasible in a living organism, the authors discovered another way to take advantage of this information. They conjugated neurokinin 1 receptor antagonists to cholestanol, promoting their incorporation into endosomes, where they successfully inhibited their target to block pain transmission. Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)–coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NK1R) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NK1R in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane–targeted antagonists. Pharmacological and genetic disruption of clathrin, dynamin, and β-arrestin blocked SP-induced NK1R endocytosis and prevented SP-stimulated activation of cytosolic protein kinase C and nuclear extracellular signal–regulated kinase, as well as transcription. Endocytosis inhibitors prevented sustained SP-induced excitation of neurons in spinal cord slices in vitro and attenuated nociception in vivo. When conjugated to cholestanol to promote endosomal targeting, NK1R antagonists selectively inhibited endosomal signaling and sustained neuronal excitation. Cholestanol conjugation amplified and prolonged the antinociceptive actions of NK1R antagonists. These results reveal a critical role for endosomal signaling of the NK1R in the complex pathophysiology of pain and demonstrate the use of endosomally targeted GPCR antagonists.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Endosomal signaling of the receptor for calcitonin gene-related peptide mediates pain transmission

Rebecca E. Yarwood; Wendy L. Imlach; TinaMarie Lieu; Nicholas A. Veldhuis; Dane D. Jensen; Carmen Klein Herenbrink; Luigi Aurelio; Zhijian Cai; MacDonald J. Christie; Daniel P. Poole; Christopher J. H. Porter; Peter McLean; Gareth A. Hicks; Pierangelo Geppetti; Michelle L. Halls; Meritxell Canals; Nigel W. Bunnett

Significance G protein-coupled receptors (GPCRs) have long been considered to function primarily at the plasma membrane. Consequently, most drugs are designed to target GPCRs at the cell surface. Ligand-bound GPCRs undergo clathrin- and dynamin-dependent endocytosis. It is uncertain whether GPCRs in endosomes control complex pathophysiological processes in vivo and are a viable therapeutic target. We report that the CGRP receptor signals from endosomes to regulate activity of pain-transmitting neurons in the spinal cord. Lipid-conjugated CGRP receptor antagonists accumulate in endosomes, selectively inhibit endosomal signals, and block sustained excitation of spinal neurons and persistent nociception. The results suggest that GPCRs in endosomes, in addition to those at the cell surface, control ongoing pathophysiological processes in vivo and identify GPCRs in endosomes as a new target for therapy. G protein-coupled receptors (GPCRs) are considered to function primarily at the plasma membrane, where they interact with extracellular ligands and couple to G proteins that transmit intracellular signals. Consequently, therapeutic drugs are designed to target GPCRs at the plasma membrane. Activated GPCRs undergo clathrin-dependent endocytosis. Whether GPCRs in endosomes control pathophysiological processes in vivo and are therapeutic targets remains uncertain. We investigated the contribution of endosomal signaling of the calcitonin receptor-like receptor (CLR) to pain transmission. Calcitonin gene-related peptide (CGRP) stimulated CLR endocytosis and activated protein kinase C (PKC) in the cytosol and extracellular signal regulated kinase (ERK) in the cytosol and nucleus. Inhibitors of clathrin and dynamin prevented CLR endocytosis and activation of cytosolic PKC and nuclear ERK, which derive from endosomal CLR. A cholestanol-conjugated antagonist, CGRP8–37, accumulated in CLR-containing endosomes and selectively inhibited CLR signaling in endosomes. CGRP caused sustained excitation of neurons in slices of rat spinal cord. Inhibitors of dynamin, ERK, and PKC suppressed persistent neuronal excitation. CGRP8–37–cholestanol, but not unconjugated CGRP8–37, prevented sustained neuronal excitation. When injected intrathecally to mice, CGRP8–37–cholestanol inhibited nociceptive responses to intraplantar injection of capsaicin, formalin, or complete Freund’s adjuvant more effectively than unconjugated CGRP8–37. Our results show that CLR signals from endosomes to control pain transmission and identify CLR in endosomes as a therapeutic target for pain. Thus, GPCRs function not only at the plasma membrane but also in endosomes to control complex processes in vivo. Endosomal GPCRs are a drug target that deserve further attention.


Journal of Biological Chemistry | 2014

Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals

Dane D. Jensen; Michelle L. Halls; Jane E. Murphy; Meritxell Canals; Fiore Cattaruzza; Daniel P. Poole; TinaMarie Lieu; Hon Wai Koon; Charalabos Pothoulakis; Nigel W. Bunnett

Background: Agonists stimulate the subcellular redistribution of receptors. The importance of trafficking for pathophysiological processes is unknown. Results: Substance P inflammatory signaling required receptor interaction with β-arrestins and endothelin-converting enzyme, which mediated endocytosis and recycling. Conclusion: Sustained substance P inflammatory signaling requires receptor recycling. Significance: Mechanisms that maintain receptors at the cell surface are necessary for sustained signaling by extracellular agonists. Although the intracellular trafficking of G protein-coupled receptors controls specific signaling events, it is unclear how the spatiotemporal control of signaling contributes to complex pathophysiological processes such as inflammation. By using bioluminescence resonance energy transfer and superresolution microscopy, we found that substance P (SP) induces the association of the neurokinin 1 receptor (NK1R) with two classes of proteins that regulate SP signaling from plasma and endosomal membranes: the scaffolding proteins β-arrestin (βARRs) 1 and 2 and the transmembrane metallopeptidases ECE-1c and ECE-1d. In HEK293 cells and non-transformed human colonocytes, we observed that G protein-coupled receptor kinase 2 and βARR1/2 terminate plasma membrane Ca2+ signaling and initiate receptor trafficking to endosomes that is necessary for sustained activation of ERKs in the nucleus. βARRs deliver the SP-NK1R endosomes, where ECE-1 associates with the complex, degrades SP, and allows the NK1R, freed from βARRs, to recycle. Thus, both ECE-1 and βARRs mediate the resensitization of NK1R Ca2+ signaling at the plasma membrane. Sustained exposure of colonocytes to SP activates NF-κB and stimulates IL-8 secretion. This proinflammatory signaling is unaffected by inhibition of the endosomal ERK pathway but is suppressed by ECE-1 inhibition or βARR2 knockdown. Inhibition of protein phosphatase 2A, which also contributes to sustained NK1R signaling at the plasma membrane, similarly attenuates IL-8 secretion. Thus, the primary function of βARRs and ECE-1 in SP-dependent inflammatory signaling is to promote resensitization, which allows the sustained NK1R signaling from the plasma membrane that drives inflammation.


Journal of Biological Chemistry | 2016

Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

Dane D. Jensen; Peishen Zhao; Nestor N. Jiménez-Vargas; TinaMarie Lieu; Marina Gerges; Holly R. Yeatman; Meritxell Canals; Stephen Vanner; Daniel P. Poole; Nigel W. Bunnett

Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca2+ signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome

Nestor N. Jiménez-Vargas; Luke Pattison; Peishen Zhao; TinaMarie Lieu; Rocco Latorre; Dane D. Jensen; Joel Castro; Luigi Aurelio; Giang T. Le; Bernard L. Flynn; Carmen Klein Herenbrink; Holly R. Yeatman; Laura E. Edgington-Mitchell; Christopher J. H. Porter; Michelle L. Halls; Meritxell Canals; Nicholas A. Veldhuis; Daniel P. Poole; Peter McLean; Gareth A. Hicks; Nicole N. Scheff; Elyssa Chen; Aditi Bhattacharya; Brian L. Schmidt; Stuart M. Brierley; Stephen Vanner; Nigel W. Bunnett

Significance Activated G protein-coupled receptors (GPCRs) internalize and can continue to signal from endosomes. The contribution of endosomal signaling to human disease is unknown. Proteases that are generated in the colon of patients with irritable bowel syndrome (IBS) can cleave protease-activated receptor-2 (PAR2) on nociceptors to cause pain. We evaluated whether PAR2 generates signals in endosomes of nociceptors that mediate persistent hyperexcitability and pain. Biopsies of colonic mucosa from IBS patients released proteases that induced PAR2 endocytosis, endosomal signaling, and persistent hyperexcitability of nociceptors. When conjugated to the transmembrane lipid cholestanol, PAR2 antagonists accumulated in endosomes and suppressed persistent hyperexcitability. The results reveal the therapeutic potential of endosomally targeted PAR2 antagonists for IBS pain, and expand the contribution of endosomal GPCR signaling to encompass processes that are relevant to disease. Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with β-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2. A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.


Scientific Reports | 2016

Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin

Ivy Ka Man Law; Dane D. Jensen; Nigel W. Bunnett; Charalabos Pothoulakis

Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH.

Collaboration


Dive into the Dane D. Jensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Korbmacher

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge