Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dangjai Souvannakitti is active.

Publication


Featured researches published by Dangjai Souvannakitti.


Proceedings of the National Academy of Sciences of the United States of America | 2010

H2S mediates O2 sensing in the carotid body

Ying Jie Peng; Jayasri Nanduri; Gayatri Raghuraman; Dangjai Souvannakitti; Moataz M. Gadalla; Ganesh K. Kumar; Solomon H. Snyder; Nanduri R. Prabhakar

Gaseous messengers, nitric oxide and carbon monoxide, have been implicated in O2 sensing by the carotid body, a sensory organ that monitors arterial blood O2 levels and stimulates breathing in response to hypoxia. We now show that hydrogen sulfide (H2S) is a physiologic gasotransmitter of the carotid body, enhancing its sensory response to hypoxia. Glomus cells, the site of O2 sensing in the carotid body, express cystathionine γ-lyase (CSE), an H2S-generating enzyme, with hypoxia increasing H2S generation in a stimulus-dependent manner. Mice with genetic deletion of CSE display severely impaired carotid body response and ventilatory stimulation to hypoxia, as well as a loss of hypoxia-evoked H2S generation. Pharmacologic inhibition of CSE elicits a similar phenotype in mice and rats. Hypoxia-evoked H2S generation in the carotid body seems to require interaction of CSE with hemeoxygenase-2, which generates carbon monoxide. CSE is also expressed in neonatal adrenal medullary chromaffin cells of rats and mice whose hypoxia-evoked catecholamine secretion is greatly attenuated by CSE inhibitors and in CSE knockout mice.


The Journal of Physiology | 2006

Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress

Ganesh K. Kumar; Vandana Rai; Suresh D. Sharma; Devi Prasadh Ramakrishnan; Ying-Jie Peng; Dangjai Souvannakitti; Nanduri R. Prabhakar

Chronic intermittent hypoxia (CIH) augments physiological responses to low partial pressures of O2 in the arterial blood. Adrenal medullae from adult rats, however, are insensitive to direct effects of acute hypoxia. In the present study, we examined whether CIH induces hypoxic sensitivity in the adult rat adrenal medulla and, if so, by what mechanism(s). Experiments were performed on adult male rats exposed to CIH (15 s of 5% O2 followed by 5 min of 21% O2; 9 episodes h−1; 8 h d−1; for 3 or 10 days) or to comparable, cumulative durations of continuous hypoxia (CH; 4 h of 7% O2 followed by 20 h of 21% O2 for 1 or 10 days). Noradrenaline (NA) and adrenaline (ADR) effluxes were monitored from ex vivo adrenal medullae. In adrenal medullae of rats exposed to CIH, acute hypoxia evoked robust NA and ADR effluxes, whereas these responses were absent in control rats or in those exposed to CH for 1 or 10 days. Hypercapnia (10% CO2; either acidic, pH 6.8, or isohydric, pH 7.4) was ineffective in eliciting catecholamine (CA) efflux from control, CIH or CH rats. Nicotine (100 μm) evoked NA and ADR effluxes in control rats, and this response was abolished in CIH but not in CH rats. Systemic administration of 2‐deoxyglucose depleted ADR content in control rats, and CIH attenuated this response, indicating downregulation of neurally regulated CA secretion. Cytosolic and mitochondrial aconitase enzyme activities decreased in CIH adrenal medullae, suggesting increased generation of superoxide anions. Systemic administration of antioxidants reversed the effect of CIH on the adrenal medulla. Rats exposed to CIH exhibited increased blood pressures and elevated plasma CA, and antioxidants abolished these responses. These observations demonstrate that CIH induces hypoxic sensing in the adult rat adrenal medulla via mechanisms involving increased generation of superoxide anions and suggest that hypoxia‐evoked CA efflux from the adrenal medulla contributes, in part, to elevated blood pressure and plasma CA.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: Implications for recurrent apnea-induced morbidities

Jayasri Nanduri; Ning Wang; Guoxiang Yuan; Shakil A. Khan; Dangjai Souvannakitti; Ying Jie Peng; Ganesh K. Kumar; Joseph A. Garcia; Nanduri R. Prabhakar

Intermittent hypoxia (IH) occurs in many pathological conditions including recurrent apneas. Hypoxia-inducible factors (HIFs) 1 and 2 mediate transcriptional responses to low O2. A previous study showed that HIF-1 mediates some of the IH-evoked physiological responses. Because HIF-2α is an orthologue of HIF-1α, we examined the effects of IH on HIF-2α, the O2-regulated subunit expression, in pheochromocytoma 12 cell cultures. In contrast to the up-regulation of HIF-1α, HIF-2α was down-regulated by IH. Similar down-regulation of HIF-2α was also seen in carotid bodies and adrenal medullae from IH-exposed rats. Inhibitors of calpain proteases (ALLM, ALLN) prevented IH-evoked degradation of HIF-2α whereas inhibitors of prolyl hydroxylases or proteosome were ineffective. IH activated calpain proteases and down-regulated the endogenous calpain inhibitor calpastatin. IH-evoked HIF-2α degradation led to inhibition of SOD2 transcription, resulting in oxidative stress. Over-expression of transcriptionally active HIF-2α prevented IH-evoked oxidative stress and restored SOD2 activity. Systemic treatment of IH-exposed rats with ALLM rescued HIF-2α degradation and restored SOD2 activity, thereby preventing oxidative stress and hypertension. These observations demonstrate that, unlike continuous hypoxia, IH leads to down-regulation of HIF-2α via a calpain-dependent signaling pathway and results in oxidative stress as well as autonomic morbidities.


The Journal of Neuroscience | 2010

NADPH Oxidase-Dependent Regulation of T-Type Ca2+ Channels and Ryanodine Receptors Mediate the Augmented Exocytosis of Catecholamines from Intermittent Hypoxia-Treated Neonatal Rat Chromaffin Cells

Dangjai Souvannakitti; Jayasri Nanduri; Guoxiang Yuan; Ganesh K. Kumar; Aaron P. Fox; Nanduri R. Prabhakar

Nearly 90% of premature infants experience the stress of intermittent hypoxia (IH) as a consequence of recurrent apneas (periodic cessation of breathing). In neonates, catecholamine secretion from the adrenal medulla is critical for maintaining homeostasis under hypoxic stress. We recently reported that IH treatment enhanced hypoxia-evoked catecholamine secretion and [Ca2+]i responses in neonatal rat adrenal chromaffin cells and involves reactive oxygen species (ROS). The purpose of the present study was to identify the source(s) of ROS generation and examine the mechanisms underlying the enhanced catecholamine secretion by IH. Neonatal rats of either sex (postal day 0–5) were exposed to either IH or normoxia. IH treatment increased NADPH oxidase (NOX) activity, upregulated NOX2 and NOX4 transcription in adrenal medullae, and a NOX inhibitor prevented the effects of IH on hypoxia-evoked chromaffin cell secretion. IH upregulated Cav3.1 and Cav3.2 T-type Ca2+ channel mRNAs via NOX/ROS signaling and augmented T-type Ca2+ current in IH-treated chromaffin cells. Mibefradil, a blocker of T-type Ca2+ channels attenuated the effects of hypoxia on [Ca2+]i and catecholamine secretion in IH-treated cells. In Ca2+-free medium, IH-treated cells exhibited higher basal [Ca2+]i levels and more pronounced [Ca2+]i responses to hypoxia compared with controls, and blockade of ryanodine receptors (RyRs) prevented these effects. RyR2 and RyR3 mRNAs were upregulated, RyR2 was S-glutathionylated in IH-treated adrenal medullae, and NOX/ROS inhibitors prevented these effects. These results demonstrate that neonatal IH treatment leads to NOX/ROS-dependent recruitment of T-type Ca2+ channels and RyRs, resulting in augmented [Ca2+]i mobilization and catecholamine secretion.


Journal of Neurophysiology | 2009

Neonatal Intermittent Hypoxia Leads to Long-Lasting Facilitation of Acute Hypoxia-Evoked Catecholamine Secretion From Rat Chromaffin Cells

Dangjai Souvannakitti; Ganesh K. Kumar; Aaron P. Fox; Nanduri R. Prabhakar

The objective of the present study was to examine the effects of intermittent hypoxia (IH) and sustained hypoxia (SH) on hypoxia-evoked catecholamine (CA) secretion from chromaffin cells in neonatal rats and assess the underlying mechanism(s). Experiments were performed on rat pups exposed to either IH (15-s hypoxia/5-min normoxia; 8 h/day) or SH (hypobaric hypoxia, 0.4 atm) or normoxia (controls) from P0 to P5. IH treatment facilitated hypoxia-evoked CA secretion and elevations in the intracellular calcium ion concentration ([Ca(2+)](i)) and these responses were attenuated, but not abolished, by treatments designed to eliminate Ca(2+) flux into cells (Ca(2+)-free medium or Cd(2+)), indicating that intracellular Ca(2+) stores were augmented by IH. Norepinephrine (NE) and epinephrine (E) levels of adrenal medullae were elevated in IH-treated pups. IH treatment increased reactive oxygen species (ROS) production in adrenal medullae and antioxidant treatment prevented IH-induced facilitation of CA secretion, elevations in [Ca(2+)](i) by hypoxia, and the up-regulation of NE and E. The effects of neonatal IH treatment on hypoxia-induced CA secretion and elevation in [Ca(2+)](i), CA, and ROS levels persisted in rats reared under normoxia for >30 days. In striking contrast, chromaffin cells from SH-treated animals exhibited attenuated hypoxia-evoked CA secretion. In SH-treated cells hypoxia-evoked elevations in [Ca(2+)](i), NE and E contents, and ROS levels were comparable with controls. These observations demonstrate that: 1) neonatal IH and SH evoke opposite effects on hypoxia-evoked CA secretion from chromaffin cells, 2) ROS signaling mediates the faciltatory effects of IH, and 3) the effects of neonatal IH on chromaffin cells persist into adult life.


Advances in Experimental Medicine and Biology | 2009

Contrasting Effects of Intermittent and Continuous Hypoxia on Low O2 Evoked Catecholamine Secretion from Neonatal Rat Chromaffin Cells

Dangjai Souvannakitti; Ganesh K. Kumar; Aaron P. Fox; Nanduri R. Prabhakar

In the present study we examined the effects of intermittent (IH) and sustained hypoxia (SH) on low PO(2)-evoked catecholamine (CA) secretion from neonatal rat chromaffin cells. Experiments were performed on chromaffin cells isolated from rat pups exposed to either IH (P0-P5; 15 s hypoxia-5 min normoxia;8 h/day) or SH (hypobaric hypoxia; 0.4ATM). CA secretion from chromaffin cells was monitored by amperometry. Control chromaffin cells, from P5 rat pups, exhibited robust CA secretion in response to acute hypoxia. IH facilitated whereas SH attenuated hypoxia-evoked CA secretion. IH increased the epinephrine and norepinephrine content of the adrenal medulla whereas SH had no effect. These results demonstrate that neonatal exposures IH and SH exert diametrically opposed effects on acute hypoxia-evoked CA secretion from chromaffin cells and CA contents.


Archive | 2010

H 2 S mediates O 2 sensing in the carotid body

Ying-Jie Peng; Jayasri Nanduri; Gayatri Raghuraman; Dangjai Souvannakitti; Moataz M. Gadalla; Ganesh K. Kumar; Solomon H. Snyder; Nanduri R. Prabhakar


American Journal of Physiology-cell Physiology | 2010

Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells

Dangjai Souvannakitti; Barbara Kuri; Guoxiang Yuan; Anita Pawar; Ganesh K. Kumar; Corey Smith; Aaron P. Fox; Nanduri R. Prabhakar


american thoracic society international conference | 2010

Intermittent Hypoxia Activates Ryanodine Receptors (RyRs) Via S-glutathionylation In Neonatal Rat Adrenal Chromaffin Cells And Contributes To Augmented Catecholamines secretion

Dangjai Souvannakitti; Guoxiang Yuan; Jayasri Nanduri; Ganesh K. Kumar; Aaron P. Fox; Nanduri R. Prabhakar


The FASEB Journal | 2009

Contrasting influence of two paradigms of hypoxia on catecholamine secretion from neonatal chromaffin cells

Dangjai Souvannakitti; Ganesh K. Kumar; Aaron P. Fox; Nanduri R. Prabhakar

Collaboration


Dive into the Dangjai Souvannakitti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. Garcia

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Moataz M. Gadalla

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ning Wang

University of Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge