Danhong Zhu
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Danhong Zhu.
Investigative Ophthalmology & Visual Science | 2013
Bruno Diniz; Padmaja B. Thomas; Biju B. Thomas; Ramiro Ribeiro; Yuntao Hu; Rodrigo Brant; Ashish Ahuja; Danhong Zhu; Laura Liu; Michael Koss; Mauricio Maia; Gerald J. Chader; David R. Hinton; Mark S. Humayun
PURPOSE To evaluate cell survival and tumorigenicity of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). METHODS Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). RESULTS The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. CONCLUSIONS hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects.
Ophthalmic Research | 2012
Yuntao Hu; Laura Liu; Bo Lu; Danhong Zhu; Ramiro Ribeiro; Bruno Diniz; Padmaja B. Thomas; Ashish Ahuja; David R. Hinton; Yu-Chong Tai; Sherry T. Hikita; Lincoln V. Johnson; Dennis O. Clegg; Biju B. Thomas; Mark S. Humayun
Objective: To evaluate the feasibility of a new technique for the implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium (RPE) cells into the subretinal space of retina-degenerate Royal College of Surgeon (RCS) rats. Methods: A platform device was used for the implantation of 4-µm-thick parylene substrates containing a monolayer of human embryonic stem cell-derived RPE (hESC-RPE). Normal Copenhagen rats (n = 6) and RCS rats (n = 5) were used for the study. Spectral-domain optical coherence tomography (SD-OCT) scanning and histological examinations were performed to confirm placement location of the implant. hESC-RPE cells attached to the substrate before and after implantation were evaluated using standard cell counting techniques. Results: SD-OCT scanning and histological examination revealed that the substrates were precisely placed in the rat’s subretinal space. The hESC-RPE cell monolayer that covered the surface of the substrate was found to be intact after implantation. Cell counting data showed that less than 2% of cells were lost from the substrate due to the implantation procedure (preimplantation count 2,792 ± 74.09 cells versus postimplantation count 2,741 ± 62.08 cells). Detailed microscopic examination suggested that the cell loss occurred mostly along the edges of the implant. Conclusion: With the help of this platform device, it is possible to implant ultrathin substrates containing an RPE monolayer into the rat’s subretinal space. This technique can be a useful approach for stem cell-based tissue bioengineering techniques in retinal transplantation research.
Investigative Ophthalmology & Visual Science | 2011
Danhong Zhu; Xuemei Deng; Christine Spee; Shozo Sonoda; Chih-Lin Hsieh; Ernesto Barron; Martin F. Pera; David R. Hinton
PURPOSE Human embryonic stem cell-derived RPE (hES-RPE) transplantation is a promising therapy for atrophic age-related macular degeneration (AMD); however, future therapeutic approaches may consider co-transplantation of hES-RPE with retinal progenitor cells (RPCs) as a replacement source for lost photoreceptors. The purpose of this study was to determine the effect of polarization of hES-RPE monolayers on their ability to promote survival of RPCs. METHODS The hES-3 cell line was used for derivation of RPE. Polarization of hES-RPE was achieved by prolonged growth on permeable inserts. RPCs were isolated from 16- to 18-week-gestation human fetal eyes. ELISA was performed to measure pigment epithelium-derived factor (PEDF) levels from conditioned media. RESULTS Pigmented RPE-like cells appeared as early as 4 weeks in culture and were subcultured at 8 weeks. Differentiated hES-RPE had a normal chromosomal karyotype. Phenotypically polarized hES-RPE cells showed expression of RPE-specific genes. Polarized hES-RPE showed prominent expression of PEDF in apical cytoplasm and a marked increase in secretion of PEDF into the medium compared with nonpolarized culture. RPCs grown in the presence of supernatants from polarized hES-RPE showed enhanced survival, which was ablated by the presence of anti-PEDF antibody. CONCLUSIONS hES-3 cells can be differentiated into functionally polarized hES-RPE cells that exhibit characteristics similar to those of native RPE. On polarization, hES-RPE cells secrete high levels of PEDF that can support RPC survival. These experiments suggest that polarization of hES-RPE would be an important feature for promotion of RPC survival in future cell therapy for atrophic AMD.
Progress in Retinal and Eye Research | 2015
Hossein Nazari; Li Zhang; Danhong Zhu; Gerald J. Chader; Paulo Falabella; Francisco Rosa Stefanini; Teisha J. Rowland; Dennis O. Clegg; Amir H. Kashani; David R. Hinton; Mark S. Humayun
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly in developed countries. AMD is classified as either neovascular (NV-AMD) or non-neovascular (NNV-AMD). Cumulative damage to the retinal pigment epithelium, Bruchs membrane, and choriocapillaris leads to dysfunction and loss of RPE cells. This causes degeneration of the overlying photoreceptors and consequential vision loss in advanced NNV-AMD (Geographic Atrophy). In NV-AMD, abnormal growth of capillaries under the retina and RPE, which leads to hemorrhage and fluid leakage, is the main cause of photoreceptor damage. Although a number of drugs (e.g., anti-VEGF) are in use for NV-AMD, there is currently no treatment for advanced NNV-AMD. However, replacing dead or dysfunctional RPE with healthy RPE has been shown to rescue dying photoreceptors and improve vision in animal models of retinal degeneration and possibly in AMD patients. Differentiation of RPE from human embryonic stem cells (hESC-RPE) and from induced pluripotent stem cells (iPSC-RPE) has created a potentially unlimited source for replacing dead or dying RPE. Such cells have been shown to incorporate into the degenerating retina and result in anatomic and functional improvement. However, major ethical, regulatory, safety, and technical challenges have yet to be overcome before stem cell-based therapies can be used in standard treatments. This review outlines the current knowledge surrounding the application of hESC-RPE and iPSC-RPE in AMD. Following an introduction on the pathogenesis and available treatments of AMD, methods to generate stem cell-derived RPE, immune reaction against such cells, and approaches to deliver desired cells into the eye will be explored along with broader issues of efficacy and safety. Lastly, strategies to improve these stem cell-based treatments will be discussed.
Journal of Biological Chemistry | 2009
Danhong Zhu; Jian Wu; Christine Spee; Stephen J. Ryan; David R. Hinton
The retinal pigment epithelium is a primary site of pathology in age-related macular degeneration. Oxidative stress and senescence are both thought to be important mediators of macular degeneration pathogenesis. We demonstrate here that bone morphogenetic protein-4 is highly expressed in the retinal pigment epithelium and adjacent extracellular matrix of patients with dry age-related macular degeneration. In vitro studies revealed that sublethal oxidative stress increased bone morphogenetic protein-4 expression in retinal pigment epithelial cells, and both bone morphogenetic protein-4 and persistent mild oxidative stress can induce retinal pigment epithelial cell senescence through p53-p21Cip1/WAF1-Rb pathway. We further demonstrate that bone morphogenetic protein-4 acts as a mediator in oxidative stress-induced senescence and that this mediator function is via Smad and the p38 signaling pathway to increase and activate p53 and p21Cip1/WAF1 and decrease phospho-Rb. Oxidative stress-induced senescence can be blocked by Chordin-like, an antagonist of bone morphogenetic protein-4, or SB203580, a phospho-p38 inhibitor. Our results suggest that oxidative stress and bone morphogenetic protein-4 may interact to promote retinal pigment epithelial cell senescence and that bone morphogenetic protein-4 may represent a novel therapeutic target to inhibit the progressive effects of oxidative stress and senescence in dry age-related macular degeneration.
Investigative Ophthalmology & Visual Science | 2008
Shikun He; Youxin Chen; R. Khankan; Ernesto Barron; Richard Burton; Danhong Zhu; Stephen J. Ryan; Noelynn Oliver; David R. Hinton
PURPOSE To investigate the role of connective tissue growth factor (CTGF) in the pathogenesis of proliferative vitreoretinopathy (PVR). METHODS Expression of CTGF was evaluated immunohistochemically in human PVR membranes, and the accumulation of CTGF in the vitreous was evaluated by ELISA. The effects of CTGF on type I collagen mRNA and protein expression in RPE were assayed by real-time PCR and ELISA, and migration was assayed with a Boyden chamber assay. Experimental PVR was induced in rabbits with vitreous injection of RPE cells plus rhCTGF; injection of RPE cells plus platelet derived-growth factor, with or without rhCTGF, or by injection of RPE cells infected with an adenoviral vector that expressed CTGF. RESULTS CTGF was highly expressed in human PVR membranes and partially colocalized with cytokeratin-positive RPE cells. Treatment of RPE with rhCTGF stimulated migration with a peak response at 50 ng/mL (P < 0.05) and increased expression of type I collagen (P < 0.05). There was a prominent accumulation of the N-terminal half of CTGF in the vitreous of patients with PVR. Intravitreous injection of rhCTGF alone did not produce PVR, whereas such injections into rabbits with mild, nonfibrotic PVR promoted the development of dense, fibrotic epiretinal membranes. Similarly, intravitreous injection of RPE cells infected with adenoviral vectors that overexpress CTGF induced fibrotic PVR. Experimental PVR was associated with increased CTGF mRNA in PVR membranes and accumulation of CTGF half fragments in the vitreous. CONCLUSIONS The results identify CTGF as a major mediator of retinal fibrosis and potentially an effective therapeutic target for PVR.
Vision Research | 2010
Danhong Zhu; Parameswaran G. Sreekumar; David R. Hinton; Ram Kannan
Ceramide and its metabolic derivatives are important modulators of cellular apoptosis and proliferation. Dysregulation or imbalance of their metabolic pathways may promote the development of retinal degeneration. The aim of this study was to identify the expression and regulation of key enzymes of the ceramide pathway in retinal pigment epithelial (RPE) cells. RT-PCR was used to screen the enzymes involved in ceramide metabolism that are expressed in RPE. Over-expression of neutral sphingomyelinase-2 (SMPD3) or sphingosine kinase 1 (Sphk1) in ARPE-19 cells was achieved by transient transfection of SMPD3 or Sphk1 cDNA subcloned into an expression vector. The number of apoptotic or proliferating cells was determined using TUNEL and BrdU assays, respectively. Neutral sphingomyelinase-1, neutral sphingomyelinase-2, acidic ceramidase, ceramide kinase, SphK1 and Sphk2 were expressed in both ARPE-19 and early passage human fetal RPE (fRPE) cells, while alkaline ceramidase 2 was only expressed in fRPE cells. Over-expression of SMPD3 decreased RPE cell proliferation and increased cell apoptosis. The percentage of apoptotic cells increased proportionally with the amount of transfected SMPD3 DNA. Over-expression of SphK1 promoted cell proliferation and protected ARPE-19 cells from ceramide-induced apoptosis. The effect of C(2) ceramide on induction of apoptosis was evaluated in polarized vs. non-polarized RPE cultures; polarization of RPE was associated with much reduced apoptosis in response to ceramide. In conclusion, RPE cells possess the synthetic machinery for the production of ceramide, sphingosine, ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P). Over-expression of SMPD3 may increase cellular ceramide levels, leading to enhanced cell death and arrested cell proliferation. The selective induction of apoptosis in non-polarized RPE cultures by C(2) ceramide suggests that increased ceramide levels will preferentially affect non-polarized RPE, as are found in late age-related macular degeneration lesions, and may spare the normal RPE monolayer. SphK1 over-expression increased cellular S1P, which promoted cell proliferation and protected RPE from ceramide-induced apoptosis. Understanding the relationship between the metabolism of sphingolipids and their effects in RPE cell survival/death may help us to develop effective and efficient therapies for retinal degeneration.
Investigative Ophthalmology & Visual Science | 2016
Biju B. Thomas; Danhong Zhu; Li Zhang; Padmaja B. Thomas; Yuntao Hu; Hossein Nazari; Francisco Rosa Stefanini; Paulo Falabella; Dennis O. Clegg; David R. Hinton; Mark S. Humayun
PURPOSE To determine the safety, survival, and functionality of human embryonic stem cell-derived RPE (hESC-RPE) cells seeded on a polymeric substrate (rCPCB-RPE1 implant) and implanted into the subretinal (SR) space of Royal College of Surgeons (RCS) rats. METHODS Monolayers of hESC-RPE cells cultured on parylene membrane were transplanted into the SR space of 4-week-old RCS rats. Group 1 (n = 46) received vitronectin-coated parylene membrane without cells (rMSPM+VN), group 2 (n = 59) received rCPCB-RPE1 implants, and group 3 (n = 13) served as the control group. Animals that are selected based on optical coherence tomography screening were subjected to visual function assays using optokinetic (OKN) testing and superior colliculus (SC) electrophysiology. At approximately 25 weeks of age (21 weeks after surgery), the eyes were examined histologically for cell survival, phagocytosis, and local toxicity. RESULTS Eighty-seven percent of the rCPCB-RPE1-implanted animals showed hESC-RPE survivability. Significant numbers of outer nuclear layer cells were rescued in both group 1 (rMSPM+VN) and group 2 (rCPCB-RPE1) animals. A significantly higher ratio of rod photoreceptor cells to cone photoreceptor cells was found in the rCPCB-RPE1-implanted group. Animals with rCPCB-RPE1 implant showed hESC-RPE cells containing rhodopsin-positive particles in immunohistochemistry, suggesting phagocytic function. Superior colliculus mapping data demonstrated that a significantly higher number of SC sites responded to light stimulus at a lower luminance threshold level in the rCPCB-RPE1-implanted group. Optokinetic data suggested both implantation groups showed improved visual acuity. CONCLUSIONS These results demonstrate the safety, survival, and functionality of the hESC-RPE monolayer transplantation in an RPE dysfunction rat model.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Arunodoy Sur; Shailaja Kesaraju; Howard Prentice; Kasirajan Ayyanathan; Diane Baronas-Lowell; Danhong Zhu; David R. Hinton; Janet C. Blanks; Herbert Weissbach
Significance Oxidative stress-induced damage to retinal pigmented epithelial (RPE) cells is implicated in the progression of age-related macular degeneration (AMD), which is one of the primary causes of vision loss in the elderly. The present studies show that sulindac, a known nonsteroidal antiinflammatory drug, can protect an established RPE cell line, low-passage human fetal RPE, and polarized primary human fetal RPE cells against oxidative damage. The results with the RPE cell line indicate that the protective response is similar to that seen with ischemic preconditioning. Our results suggest that preventing oxidative damage in RPE cells by this drug-induced protective mechanism could be an inexpensive and relatively nontoxic therapeutic approach for AMD treatment. The retinal pigmented epithelial (RPE) layer is one of the major ocular tissues affected by oxidative stress and is known to play an important role in the etiology of age-related macular degeneration (AMD), the major cause of blinding in the elderly. In the present study, sulindac, a nonsteroidal antiinflammatory drug (NSAID), was tested for protection against oxidative stress-induced damage in an established RPE cell line (ARPE-19). Besides its established antiinflammatory activity, sulindac has previously been shown to protect cardiac tissue against ischemia/reperfusion damage, although the exact mechanism was not elucidated. As shown here, sulindac can also protect RPE cells from chemical oxidative damage or UV light by initiating a protective mechanism similar to what is observed in ischemic preconditioning (IPC) response. The mechanism of protection appears to be triggered by reactive oxygen species (ROS) and involves known IPC signaling components such as PKG and PKC epsilon in addition to the mitochondrial ATP-sensitive K+ channel. Sulindac induced iNOS and Hsp70, late-phase IPC markers in the RPE cells. A unique feature of the sulindac protective response is that it involves activation of the peroxisome proliferator-activated receptor alpha (PPAR-α). We have also used low-passage human fetal RPE and polarized primary fetal RPE cells to validate the basic observation that sulindac can protect retinal cells against oxidative stress. These findings indicate a mechanism for preventing oxidative stress in RPE cells and suggest that sulindac could be used therapeutically for slowing the progression of AMD.
The FASEB Journal | 2011
J. Xu; Danhong Zhu; Shikun He; Christine Spee; Stephen J. Ryan; David R. Hinton
Bone morphogenetic protein‐4 (BMP4) may be involved in the molecular switch that determines which late form of age‐related macular degeneration (AMD) an individual develops. BMP4 expression is high in retinal pigment epithelium (RPE) cells in late, dry AMD patients, while BMP4 expression is low in the wet form of the disease, characterized by choroidal neovascularization (CNV). Here, we sought to determine the mechanism by which BMP4 is down‐regulated in CNV. BMP4 expression was decreased within laser‐induced CNV lesions in mice at a time when tumor necrosis factor (TNF) expression was high (7 d postlaser) and was reexpressed in RPE when TNF levels declined (14 d postlaser). We found that TNF, an important angiogenic stimulus, significantly down‐regulates BMP4 expression in cultured human fetal RPE cells, ARPE‐19 cells, and RPE cells in murine posterior eye cup explants. We identified two specificity protein 1 (Sp1) binding sites in the BMP4 promoter that are required for basal expression of BMP4 and its down‐regulation by TNF. Through c‐Jun NH2‐terminal kinase (JNK) activation, TNF modulates Sp1 phosphorylation, thus decreasing its affinity to the BMP4 promoter. The down‐regulation of BMP4 expression by TNF in CNV and mechanisms established might be useful for defining novel targets for AMD therapy.—Xu, J., Zhu, D., He, S., Spee, C., Ryan, S. J., Hinton, D. R. Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with age‐related macular degeneration. FASEB J. 25, 2221‐2233 (2011). www.fasebj.org