Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Danica Chen is active.

Publication


Featured researches published by Danica Chen.


Cell | 2008

The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control

Yasukazu Nakahata; Milota Kaluzová; Benedetto Grimaldi; Saurabh Sahar; Jun Hirayama; Danica Chen; Leonard Guarente; Paolo Sassone-Corsi

Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.


Cell Metabolism | 2010

Calorie Restriction Reduces Oxidative Stress by SIRT3-Mediated SOD2 Activation

Xiaolei Qiu; Katharine Brown; Matthew D. Hirschey; Eric Verdin; Danica Chen

A major cause of aging and numerous diseases is thought to be cumulative oxidative stress, resulting from the production of reactive oxygen species (ROS) during respiration. Calorie restriction (CR), the most robust intervention to extend life span and ameliorate various diseases in mammals, reduces oxidative stress and damage. However, the underlying mechanism is unknown. Here, we show that the protective effects of CR on oxidative stress and damage are diminished in mice lacking SIRT3, a mitochondrial deacetylase. SIRT3 reduces cellular ROS levels dependent on superoxide dismutase 2 (SOD2), a major mitochondrial antioxidant enzyme. SIRT3 deacetylates two critical lysine residues on SOD2 and promotes its antioxidative activity. Importantly, the ability of SOD2 to reduce cellular ROS and promote oxidative stress resistance is greatly enhanced by SIRT3. Our studies identify a defense program that CR provokes to reduce oxidative stress and suggest approaches to combat aging and oxidative stress-related diseases.


Genes & Development | 2008

Tissue-specific regulation of SIRT1 by calorie restriction

Danica Chen; Joanne Bruno; Erin Easlon; Su Ju Lin; Hwei Ling Cheng; Frederick W. Alt; Leonard Guarente

Calorie restriction (CR) has been reported to increase SIRT1 protein levels in mice, rats, and humans, and elevated activity of SIRT1 orthologs extends life span in yeast, worms, and flies. In this study, we challenge the paradigm that CR induces SIRT1 activity in all tissues by showing that activity of this sirtuin in the liver is, in fact, reduced by CR and activated by a high-caloric diet. We demonstrate this change both by assaying levels of SIRT1 and its small molecule regulators, NAD and NADH, as well as assessing phenotypes of a liver-specific SIRT1 knockout mouse on various diets. Our findings suggest that designing CR mimetics that target SIRT1 to provide uniform systemic benefits may be more complex than currently imagined.


Nature | 2008

A Fasting Inducible Switch Modulates Gluconeogenesis Via Activator-Coactivator Exchange

Yi Liu; Renaud Dentin; Danica Chen; Susan Hedrick; Kim Ravnskjaer; Simon Schenk; Jill Milne; David J. Meyers; Phil Cole; John R. Yates; Jerrold M. Olefsky; Leonard Guarente; Marc Montminy

During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.


Science | 2005

Increase in Activity During Calorie Restriction Requires Sirt1

Danica Chen; Andrew D. Steele; Susan Lindquist; Leonard Guarente

Sir2 (silent information regulator 2) is a nicotinamide adenine dinucletide‐dependent deacetylase required for longevity due to calorie restriction in yeast and Drosophila. In mammals, calorie restriction induces a complex pattern of physiological and behavioral changes. Here we report that the mammalian Sir2 ortholog, Sirt1, is required for the induction of a phenotype by calorie restriction in mice.


Science | 2015

A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging

Mary Mohrin; Jiyung Shin; Yufei Liu; Katharine Brown; Hanzhi Luo; Yannan Xi; Cole M. Haynes; Danica Chen

Keeping stem cells in tip top condition Stem cells are important in the maintenance and growth of tissues. For the health of the organism as a whole, it is important that only healthy stem cells be used. Mohrin et al. elucidated a regulatory branch of the mitochondrial unfolded protein response that is coupled to cellular energy metabolism and proliferation in stem cells (see the Perspective by Ocampo and Belmonte). Mitochondrial protein folding stress triggered a metabolic checkpoint that regulates the cell cycle. Deregulation of this pathway interfered with stem cell quiescence and compromised regenerative function. Science, this issue p. 1374; see also p. 1319 A regulatory branch of the mitochondrial unfolded protein response pathway is coupled to cellular energy metabolism and proliferation. [Also see Perspective by Ocampo and Belmonte] Deterioration of adult stem cells accounts for much of aging-associated compromised tissue maintenance. How stem cells maintain metabolic homeostasis remains elusive. Here, we identified a regulatory branch of the mitochondrial unfolded protein response (UPRmt), which is mediated by the interplay of SIRT7 and NRF1 and is coupled to cellular energy metabolism and proliferation. SIRT7 inactivation caused reduced quiescence, increased mitochondrial protein folding stress (PFSmt), and compromised regenerative capacity of hematopoietic stem cells (HSCs). SIRT7 expression was reduced in aged HSCs, and SIRT7 up-regulation improved the regenerative capacity of aged HSCs. These findings define the deregulation of a UPRmt-mediated metabolic checkpoint as a reversible contributing factor for HSC aging.


Experimental Gerontology | 2008

The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration

Danica Chen; Andrew D. Steele; Gregor Hutter; Joanne Bruno; Arvind Govindarajan; Erin Easlon; Su Ju Lin; Adriano Aguzzi; Susan Lindquist; Leonard Guarente

A central focus of aging research is to determine how calorie restriction (CR) extends lifespan and delays diseases of aging. SIRT1, the mammalian ortholog of Sir2 in yeast, is a longevity factor which mediates dietary restriction in diverse species. In addition, SIRT1 plays a protective role in several models of neurodegenerative disease. We tested the role of SIRT1 in mediating the effects of CR in a mouse model of prion disease. Prion diseases are protein misfolding disorders of the central nervous system with many similarities to other neurodegenerative diseases, including deposition of aggregated protein, gliosis, and loss of synapses and neurons. We report that the onset of prion disease is delayed by CR and in the SIRT1 KO mice fed ad libitum. CR exerts no further effect on the SIRT1 KO strain, suggesting the effects of CR and SIRT1 deletion are mechanistically coupled. In conjunction, SIRT1 is downregulated in certain brain regions of CR mice. The expression of PrP mRNA and protein is reduced in the brains of CR mice and in SIRT1 knockout mice, suggesting a possible mechanism for the delayed onset of disease, as PrP levels are a critical determinant of how quickly mice succumb to prion disease. Surprisingly, CR greatly shortens the duration of clinical symptoms of prion disease and ultimately shortens lifespan of prion-inoculated mice in a manner that is independent of SIRT1. Taken together, our results suggest a more complex interplay between CR, SIRT1, and neurodegenerative diseases than previously appreciated.


Biochimica et Biophysica Acta | 2010

Sirtuin regulation in calorie restriction

Xiaolei Qiu; Katharine Brown; Yehu Moran; Danica Chen

The beneficial effects of calorie restriction diet in extending lifespan and preventing diseases have long been recognized. Recent genetic and molecular studies in model organisms began to uncover the molecular regulation of calorie restriction response, with the gene SIR2 playing an essential role. This article summarizes the latest development on how mammalian SIR2 homologs coordinately regulate the calorie restriction response.


Trends in Endocrinology and Metabolism | 2017

Nutrient Sensing and the Oxidative Stress Response

Hanzhi Luo; Hou-Hsien Chiang; Makensie Louw; Albert Susanto; Danica Chen

The simplicity and effectiveness of calorie restriction (CR) in lifespan and healthspan extension have fascinated generations searching for the Fountain of Youth. CR reduces levels of oxidative stress and damage, which have been postulated in the free radical theory of aging as a major cause of aging and diseases of aging. This reduction has long been viewed as a result of passive slowing of metabolism. Recent advances in nutrient sensing have provided molecular insights into the oxidative stress response and suggest that CR triggers an active defense program involving a cascade of molecular regulators to reduce oxidative stress. Physiological studies have provided strong support for oxidative stress in the development of aging-associated conditions and diseases but have also revealed the surprising requirement for oxidative stress to support normal physiological functions and, in some contexts, even slow aging and prevent the progression of cancer. Deciphering the molecular mechanisms and physiological implications of the oxidative stress response during CR will increase our understanding of the basic biology of aging and pave the way for the design of CR mimetics to improve healthspan.


Current Opinion in Hematology | 2016

The mitochondrial metabolic checkpoint and aging of hematopoietic stem cells.

Mary Mohrin; Danica Chen

Purpose of reviewCell-cycle checkpoints are surveillance mechanisms in eukaryotic cells that monitor the condition of the cell, repair cellular damages, and allow the cell to progress through the various phases of the cell cycle when conditions become favorable. We review recent advances in hematopoietic stem cell (HSC) biology, highlighting a mitochondrial metabolic checkpoint that is essential for HSCs to return to the quiescent state. Recent findingsAs quiescent HSCs enter the cell cycle, mitochondrial biogenesis is induced, which is associated with increased mitochondrial protein folding stress and mitochondrial oxidative stress. Mitochondrial unfolded protein response and mitochondrial oxidative stress response are activated to alleviate stresses and allow HSCs to exit the cell cycle and return to quiescence. Other mitochondrial maintenance mechanisms include mitophagy and asymmetric segregation of aged mitochondria. SummaryBecause loss of HSC quiescence results in the depletion of the HSC pool and compromised tissue regeneration, deciphering the molecular mechanisms that regulate the mitochondrial metabolic checkpoint in HSCs will increase our understanding of hematopoiesis and how it becomes dysregulated under pathological conditions and during aging. More broadly, this knowledge is instrumental for understanding the maintenance of cells that convert between quiescence and proliferation to support their physiological functions.

Collaboration


Dive into the Danica Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard Guarente

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mary Mohrin

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiyung Shin

University of California

View shared research outputs
Top Co-Authors

Avatar

Yufei Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Hanzhi Luo

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaolei Qiu

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Steele

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dan Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge