Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Barbash is active.

Publication


Featured researches published by Daniel A. Barbash.


Science | 2006

Two Dobzhansky-Muller Genes Interact to Cause Hybrid Lethality in Drosophila

Nicholas J. Brideau; Heather A. Flores; Jun Wang; Shamoni Maheshwari; Xu Wang; Daniel A. Barbash

The Dobzhansky-Muller model proposes that hybrid incompatibilities are caused by the interaction between genes that have functionally diverged in the respective hybridizing species. Here, we show that Lethal hybrid rescue (Lhr) has functionally diverged in Drosophila simulans and interacts with Hybrid male rescue (Hmr), which has functionally diverged in D. melanogaster, to cause lethality in F1 hybrid males. LHR localizes to heterochromatic regions of the genome and has diverged extensively in sequence between these species in a manner consistent with positive selection. Rapidly evolving heterochromatic DNA sequences may be driving the evolution of this incompatibility gene.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A rapidly evolving MYB-related protein causes species isolation in Drosophila

Daniel A. Barbash; Dominic F. Siino; Aaron M. Tarone; John Roote

Matings among different species of animals or plants often result in sterile or lethal hybrids. Identifying the evolutionary forces that create hybrid incompatibility alleles is fundamental to understanding the process of speciation, but very few such alleles have been identified, particularly in model organisms that are amenable to experimental manipulation. We report here the cloning of the first, to our knowledge, Drosophila melanogaster gene involved in hybrid incompatibilities, Hybrid male rescue (Hmr). Hmr causes lethality and female sterility in hybrids among D. melanogaster and its sibling species. We have found that Hmr encodes a protein with homology to a family of MYB-related DNA-binding transcriptional regulators. The HMR protein has evolved both amino acid substitutions and insertions and deletions at an extraordinarily high rate between D. melanogaster and its sibling species, including in its predicted DNA-binding domain. Our results suggest that hybrid lethality may result from disruptions in gene regulation, and we also propose that rapid evolution may be a hallmark of speciation genes in general.


Annual Review of Genetics | 2011

The Genetics of Hybrid Incompatibilities

Shamoni Maheshwari; Daniel A. Barbash

Incompatibilities in interspecific hybrids, such as sterility and lethality, are widely observed causes of reproductive isolation and thus contribute to speciation. Because hybrid incompatibilities are caused by divergence in each of the hybridizing species, they also reveal genomic changes occurring on short evolutionary time scales that have functional consequences. These changes include divergence in protein-coding gene sequence, structure, and location, as well as divergence in noncoding DNAs. The most important unresolved issue is understanding the evolutionary causes of the divergence within species that in turn leads to incompatibility between species. Surprisingly, much of this divergence does not appear to be driven by ecological adaptation but may instead result from responses to purely mutational mechanisms or to internal genetic conflicts.


PLOS Biology | 2009

Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila

Patrick M. Ferree; Daniel A. Barbash

Early embryonic lethality of interspecies hybrids in Drosophila can be caused by defects in mitotic segregation of paternal X chromatids carrying a critical domain of heterochromatic DNA.


PLOS Biology | 2004

Functional Divergence Caused by Ancient Positive Selection of a Drosophila Hybrid Incompatibility Locus

Daniel A. Barbash; Aaron M. Tarone

Interspecific hybrid lethality and sterility are a consequence of divergent evolution between species and serve to maintain the discrete identities of species. The evolution of hybrid incompatibilities has been described in widely accepted models by Dobzhansky and Muller where lineage-specific functional divergence is the essential characteristic of hybrid incompatibility genes. Experimentally tractable models are required to identify and test candidate hybrid incompatibility genes. Several Drosophila melanogaster genes involved in hybrid incompatibility have been identified but none has yet been shown to have functionally diverged in accordance with the Dobzhansky-Muller model. By introducing transgenic copies of the X-linked Hybrid male rescue (Hmr) gene into D. melanogaster from its sibling species D. simulans and D. mauritiana, we demonstrate that Hmr has functionally diverged to cause F1 hybrid incompatibility between these species. Consistent with the Dobzhansky-Muller model, we find that Hmr has diverged extensively in the D. melanogaster lineage, but we also find extensive divergence in the sibling-species lineage. Together, these findings implicate over 13% of the amino acids encoded by Hmr as candidates for causing hybrid incompatibility. The exceptional level of divergence at Hmr cannot be explained by neutral processes because we use phylogenetic methods and population genetic analyses to show that the elevated amino-acid divergence in both lineages is due to positive selection in the distant past—at least one million generations ago. Our findings suggest that multiple substitutions driven by natural selection may be a general phenomenon required to generate hybrid incompatibility alleles.


PLOS Biology | 2012

Drosophila interspecific hybrids phenocopy piRNA-pathway mutants.

Erin S. Kelleher; Nathaniel B. Edelman; Daniel A. Barbash

Hybrids of two Drosophila species show transposable element derepression and piRNA pathway malfunction, revealing adaptive evolution of piRNA pathway components.


PLOS Genetics | 2014

The Hmr and Lhr hybrid incompatibility genes suppress a broad range of heterochromatic repeats.

P. Satyaki; Tawny N. Cuykendall; Kevin H.-C. Wei; Nicholas J. Brideau; Hojoong Kwak; S. Aruna; Patrick M. Ferree; Shuqing Ji; Daniel A. Barbash

Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background.


Genetics | 2010

Ninety Years of Drosophila melanogaster Hybrids

Daniel A. Barbash

Within 10 years of the beginning of experimental genetic research on Drosophila melanogaster, in 1919, A. H. Sturtevant discovered its sibling species, D. simulans. He hybridized the two species and made fundamental discoveries about the genetic basis of hybrid incompatibility. The complete sterility of surviving F1 hybrids frustrated Sturtevant and his vision of comprehensively exploring the genetics of interspecific differences. But over the next 90 years, a combination of clever genetic tricks and close observation of natural variation has led to a wealth of discovery using these and other hybrids of D. melanogaster and D. simulans, resulting in an advanced understanding of speciation and the evolution of morphology, gene regulation, and behavior.


Heredity | 2009

The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility

Xin Chenglin Li; B C Barringer; Daniel A. Barbash

Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.


Molecular Biology and Evolution | 2008

Recurrent Positive Selection of the Drosophila Hybrid Incompatibility Gene Hmr

Shamoni Maheshwari; Jun Wang; Daniel A. Barbash

Lethality in hybrids between Drosophila melanogaster and its sibling species Drosophila simulans is caused in part by the interaction of the genes Hybrid male rescue (Hmr) and Lethal hybrid rescue (Lhr). Hmr and Lhr have diverged under positive selection in the hybridizing species. Here we test whether positive selection of Hmr is confined only to D. melanogaster and D. simulans. We find that Hmr has continued to diverge under recurrent positive selection between the sibling species D. simulans and Drosophila mauritiana and along the lineage leading to the melanogaster subgroup species pair Drosophila yakuba and Drosophila santomea. Hmr encodes a member of the Myb/SANT-like domain in ADF1 (MADF) family of transcriptional regulators. We show that although MADF domains from other Drosophila proteins have predicted ionic properties consistent with DNA binding, the MADF domains encoded by different Hmr orthologs have divergent properties consistent with binding to either the DNA or the protein components of chromatin. Our results suggest that Hmr may be functionally diverged in multiple species.

Collaboration


Dive into the Daniel A. Barbash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge