Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Baur is active.

Publication


Featured researches published by Daniel A. Baur.


Nutrients | 2014

Pre-Exercise Nutrition: The Role of Macronutrients, Modified Starches and Supplements on Metabolism and Endurance Performance

Michael J. Ormsbee; Christopher W. Bach; Daniel A. Baur

Endurance athletes rarely compete in the fasted state, as this may compromise fuel stores. Thus, the timing and composition of the pre-exercise meal is a significant consideration for optimizing metabolism and subsequent endurance performance. Carbohydrate feedings prior to endurance exercise are common and have generally been shown to enhance performance, despite increasing insulin levels and reducing fat oxidation. These metabolic effects may be attenuated by consuming low glycemic index carbohydrates and/or modified starches before exercise. High fat meals seem to have beneficial metabolic effects (e.g., increasing fat oxidation and possibly sparing muscle glycogen). However, these effects do not necessarily translate into enhanced performance. Relatively little research has examined the effects of a pre-exercise high protein meal on subsequent performance, but there is some evidence to suggest enhanced pre-exercise glycogen synthesis and benefits to metabolism during exercise. Finally, various supplements (i.e., caffeine and beetroot juice) also warrant possible inclusion into pre-race nutrition for endurance athletes. Ultimately, further research is needed to optimize pre-exercise nutritional strategies for endurance performance.


Journal of Applied Physiology | 2014

Timed-daily Ingestion of Whey Protein and Exercise Training Reduces Visceral Adipose Tissue Mass and Improves Insulin Resistance: The PRISE Study

Paul J. Arciero; Daniel A. Baur; Scott Connelly; Michael J. Ormsbee

The present study examined the effects of timed ingestion of supplemental protein (20-g servings of whey protein, 3×/day), added to the habitual diet of free-living overweight/obese adults and subsequently randomized to either whey protein only (P; n = 24), whey protein and resistance exercise (P + RT; n = 27), or a whey protein and multimode exercise training program [protein and resistance exercise, intervals, stretching/yoga/Pilates, endurance exercise (PRISE); n = 28]. Total and regional body composition and visceral adipose tissue (VAT) mass (dual-energy X-ray absorptiometry), insulin sensitivity [homeostasis model assessment-estimated insulin resistance (HOMA-IR)], plasma lipids and adipokines, and feelings of hunger and satiety (visual analog scales) were measured before and after the 16-wk intervention. All groups lost body weight, fat mass (FM), and abdominal fat; however, PRISE lost significantly (P < 0.01) more body weight (3.3 ± 0.7 vs. 1.1 ± 0.7 kg, P + RT) and FM (2.8 ± 0.7 vs. 0.9 ± 0.5 kg, P + RT) and gained (P < 0.05) a greater percentage of lean body mass (2 ± 0.5 vs. 0.9 ± 0.3 and 0.6 ± 0.4%, P + RT and P, respectively). Only P + RT (0.1 ± 0.04 kg) and PRISE (0.21 ± 0.07 kg) lost VAT mass (P < 0.05). Fasting glucose decreased only in P + RT (5.1 ± 2.5 mg/dl) and PRISE (15.3 ± 2.1 mg/dl), with the greatest decline occurring in PRISE (P < 0.05). Similarly, HOMA-IR improved (0.6 ± 0.3, 0.6 ± 0.4 units), and leptin decreased (4.7 ± 2.2, 4.7 ± 3.1 ng/dl), and adiponectin increased (3.8 ± 1.1, 2.4 ± 1.1 μg/ml) only in P + RT and PRISE, respectively, with no change in P. In conclusion, we find evidence to support exercise training and timed ingestion of whey protein added to the habitual diet of free-living overweight/obese adults, independent of caloric restriction on total and regional body fat distribution, insulin resistance, and adipokines.


Nutrients | 2016

Carbohydrate Mouth Rinsing Enhances High Intensity Time Trial Performance Following Prolonged Cycling

Nicholas D. Luden; Michael J. Saunders; Andrew C. D’Lugos; Mark W. Pataky; Daniel A. Baur; Caitlin Vining; Adam B. Schroer

There is good evidence that mouth rinsing with carbohydrate (CHO) solutions can enhance endurance performance (≥30 min). The impact of a CHO mouth rinse on sprint performance has been less consistent, suggesting that CHO may confer benefits in conditions of ‘metabolic strain’. To test this hypothesis, the current study examined the impact of late-exercise mouth rinsing on sprint performance. Secondly, we investigated the effects of a protein mouth rinse (PRO) on performance. Eight trained male cyclists participated in three trials consisting of 120 min of constant-load cycling (55% Wmax) followed by a 30 km computer-simulated time trial, during which only water was provided. Following 15 min of muscle function assessment, 10 min of constant-load cycling (3 min at 35% Wmax, 7 min at 55% Wmax) was performed. This was immediately followed by a 2 km time trial. Subjects rinsed with 25 mL of CHO, PRO, or placebo (PLA) at min 5:00 and 14:30 of the 15 min muscle function phase, and min 8:00 of the 10-min constant-load cycling. Magnitude-based inferential statistics were used to analyze the effects of the mouth rinse on 2-km time trial performance and the following physiological parameters: Maximum Voluntary Contract (MVC), Rating of Perceived Exertion (RPE), Heart Rate (HR), and blood glucose levels. The primary finding was that CHO ‘likely’ enhanced performance vs. PLA (3.8%), whereas differences between PRO and PLA were unclear (0.4%). These data demonstrate that late-race performance is enhanced by a CHO rinse, but not PRO, under challenging metabolic conditions. More data should be acquired before this strategy is recommended for the later stages of cycling competition under more practical conditions, such as when carbohydrates are supplemented throughout the preceding minutes/hours of exercise.


Nutrients | 2016

Slow-Absorbing Modified Starch before and during Prolonged Cycling Increases Fat Oxidation and Gastrointestinal Distress without Changing Performance

Daniel A. Baur; Fernanda de Carvalho Silva Vargas; Christopher W. Bach; Jordan A. Garvey; Michael J. Ormsbee

While prior research reported altered fuel utilization stemming from pre-exercise modified starch ingestion, the practical value of this starch for endurance athletes who consume carbohydrates both before and during exercise is yet to be examined. The purpose of this study was to determine the effects of ingesting a hydrothermally-modified starch supplement (HMS) before and during cycling on performance, metabolism, and gastrointestinal comfort. In a crossover design, 10 male cyclists underwent three nutritional interventions: (1) a commercially available sucrose/glucose supplement (G) 30 min before (60 g carbohydrate) and every 15 min during exercise (60 g∙h−1); (2) HMS consumed at the same time points before and during exercise in isocaloric amounts to G (Iso HMS); and (3) HMS 30 min before (60 g carbohydrate) and every 60 min during exercise (30 g·h−1; Low HMS). The exercise protocol (~3 h) consisted of 1 h at 50% Wmax, 8 × 2-min intervals at 80% Wmax, and 10 maximal sprints. There were no differences in sprint performance with Iso HMS vs. G, while both G and Iso HMS likely resulted in small performance enhancements (5.0%; 90% confidence interval = ±5.3% and 4.4%; ±3.2%, respectively) relative to Low HMS. Iso HMS and Low HMS enhanced fat oxidation (31.6%; ±20.1%; very likely (Iso); 20.9%; ±16.1%; likely (Low), and reduced carbohydrate oxidation (−19.2%; ±7.6%; most likely; −22.1%; ±12.9%; very likely) during exercise relative to G. However, nausea was increased during repeated sprints with ingestion of Iso HMS (17 scale units; ±18; likely) and Low HMS (18; ±14; likely) vs. G. Covariate analysis revealed that gastrointestinal distress was associated with reductions in performance with Low HMS vs. G (likely), but this relationship was unclear with Iso HMS vs. G. In conclusion, pre- and during-exercise ingestion of HMS increases fat oxidation relative to G. However, changes do not translate to performance improvements, possibly owing to HMS-associated increases in gastrointestinal distress, which is not attenuated by reducing the intake rate of HMS during exercise.


International Journal of Sport Nutrition and Exercise Metabolism | 2014

Cycling time trial performance may be impaired by whey protein and L-alanine intake during prolonged exercise.

Adam B. Schroer; Michael J. Saunders; Daniel A. Baur; Christopher J. Womack; Nicholas D. Luden

Previous studies reported that adding protein (PRO) to carbohydrate (CHO) solutions enhances endurance performance. The ergogenic effect may be a function of additional protein/amino acid calories, but this has not been examined. In addition, although supplemental L-alanine (ALA) is readily oxidized during exercise, the subsequent impact on metabolism and prolonged endurance performance is unknown. The purpose of this investigation was to independently gauge the impact of whey PRO hydrolysate and ALA supplementation on performance and various physiological parameters. Eight cyclists (age: 22.3 ± 5.6 yr, weight: 70.0 ± 8.0 kg, VO2max: 59.4 ± 4.9 ml · kg(-1) · min(-1)) performed 120 min of constant-load cycling (55% of peak power) followed by a 30-km time trial (TT) under placebo (PLA), PRO, and ALA conditions. Magnitude-based qualitative inferences were applied to evaluate treatment differences and data are presented as percent difference between treatments ± 90% confidence limit. Both ALA (2.1 ± 2.7%) and PRO intake (-2.1 ± 2.2%) possibly harmed performance compared with PLA. Of interest, heart rate was possibly lower with ALA than PLA at 20- (-2.7 ± 3.4%) and 120-min (-1.7 ± 2.9%) of constant-load cycling and the serum interleukin-6 (IL-6) response to 120 min of cycling was likely attenuated with PRO compared with PLA (PLA, 6.6 ± 3.7 fold vs. PRO, 2.9 ± 1.8 fold). In addition, blood glucose levels were lower with PRO than PLA at 20- (-8.8 ± 2.3%; very likely) and 120-min (-4.9 ± 4.6%; likely) of constant-load cycling. Although ALA intake appears to lower HR and PRO ingestion dampens the IL-6 response to exercise, the ingestion of PRO (without CHO) or ALA does not enhance, and may actually impair, performance following prolonged cycling.


Medicine and Science in Sports and Exercise | 2014

Glucose-Fructose Enhances Performance versus Isocaloric, but Not Moderate, Glucose

Daniel A. Baur; Adam B. Schroer; Nicholas D. Luden; Christopher J. Womack; Sarah A. Smyth; Michael J. Saunders


Journal of The International Society of Sports Nutrition | 2016

The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes

Samuel J. Kramer; Daniel A. Baur; Maria T. Spicer; Matthew D. Vukovich; Michael J. Ormsbee


Journal of The International Society of Sports Nutrition | 2014

The effects of a multi-ingredient dietary supplement on body composition, adipokines, blood lipids, and metabolic health in overweight and obese men and women: a randomized controlled trial

Michael J. Ormsbee; Shweta Rawal; Daniel A. Baur; Amber W. Kinsey; Marcus L. Elam; Maria T. Spicer; Nicholas T Fischer; Takudzwa A. Madzima; D David Thomas


European Journal of Applied Physiology | 2016

Fluid retention, muscle damage, and altered body composition at the Ultraman triathlon.

Daniel A. Baur; Christopher W. Bach; William J. Hyder; Michael J. Ormsbee


Applied Physiology, Nutrition, and Metabolism | 2016

Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes.

Michael J. Ormsbee; Katherine A. Gorman; Elizabeth A. Miller; Daniel A. Baur; Lisa A. Eckel; Robert J. Contreras; Lynn B. Panton; Maria T. Spicer

Collaboration


Dive into the Daniel A. Baur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynn B. Panton

Florida State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge