Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Friess is active.

Publication


Featured researches published by Daniel A. Friess.


Nature | 2015

The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

Catherine E. Lovelock; Donald R. Cahoon; Daniel A. Friess; Glenn R. Guntenspergen; Ken W. Krauss; Ruth Reef; Kerrylee Rogers; Megan Saunders; Frida Sidik; Andrew Swales; Neil Saintilan; Le Xuan Thuyen; Tran Triet

Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.


Biological Reviews | 2012

Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems

Daniel A. Friess; Ken W. Krauss; Erik Horstman; Thorsten Balke; Tjeerd J. Bouma; Demis Galli

Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long‐term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species‐specific life‐history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long‐term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012

Daniel R. Richards; Daniel A. Friess

Significance This study quantifies the proximate drivers (i.e., replacement land uses) of mangrove deforestation across Southeast Asia between 2000 and 2012. Mangrove forests in the region were lost at an average rate of 0.18% per year. Aquaculture was a major pressure on mangrove systems during this period, but its dominance was lower than expected, contrary to popular development narratives. Rice agriculture has been a major driver of mangrove loss in Myanmar, and oil palm expansion is a key but under-recognized threat in Malaysia and Indonesia. The threat of oil palm to mangroves is likely to increase in the future as new frontiers open up in Papua, Indonesia. Future research and policy responses must consider the diversity of drivers of mangrove deforestation. The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.


Ecosystem Health and Sustainability | 2016

Impacts of climate change on mangrove ecosystems: a region by region overview

Raymond Ward; Daniel A. Friess; Richard H. Day; Richard A. MacKenzie

Abstract Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.


Environmental Conservation | 2011

Bad data equals bad policy: how to trust estimates of ecosystem loss when there is so much uncertainty?

Daniel A. Friess

Scientific evidence will be better incorporated into conservation action and environmental policy if it is deemed credible by decision-makers. However, huge uncertainties are inherent in large-scale ecosystem statistics. Two wetland case studies relating to mangrove areal extent in Peninsular Malaysia and saltmarsh loss in the UK indicate the major causes of information uncertainty, relating to poor methodological description, traceability and assumptions associated with the use of grey literature. Furthermore, potentially inaccurate information can be propagated throughout the research community and gain ‘proof by assertion’, especially if the information originates from an authoritative source. Researchers must better consider implicit and explicit uncertainty and be critical of secondary information. Future information production requires the use of rigorous peer-reviewed methodologies in order to decrease and quantify error. Such steps will increase the credibility of scientific evidence, so researchers can better contribute to a two-way science and policy deliberation approach.


AMBIO: A Journal of the Human Environment | 2015

Historical and contemporary cultural ecosystem service values in the rapidly urbanizing city state of Singapore.

Jharyathri Thiagarajah; Shermaine K. M. Wong; Daniel R. Richards; Daniel A. Friess

Cultural ecosystem services are a function of people and place, so may change as a location transitions from rural to urban. Singapore has undergone rapid urbanization after its independence in 1965, with a concomitant decline in natural habitat extent and accessibility. Using coastal mangrove forests as a case study habitat, changing cultural values were explored with a novel array of techniques, including qualitative archival analysis (photographs, oral histories), current sources (publically uploaded social media photographs), and surveys of (a) the general public and (b) visitors to publically accessible mangroves. Cultural value changed through time, with a significant transition from intrinsic, intrapersonal values (spiritual, cultural heritage) to instrumental, interpersonal values (recreation, education). Additionally, cultural value varied between different mangroves depending on their public accessibility, and the evolving degree of human interaction with the ecosystem as urban development occured. Cultural values change as development transitions, though mangroves still play an important cultural role in a heavily urbanized environment.


Wetlands Ecology and Management | 2016

Can mangroves keep pace with contemporary sea level rise? A global data review

Sigit D. Sasmito; Daniel Murdiyarso; Daniel A. Friess; Sofyan Kurnianto

Coastal vegetated wetlands such as mangrove forests provide multiple ecosystem services, though are potentially threatened by contemporary accelerated sea level rise (SLR), in addition to other immediate threats such as agriculture and coastal development. Several studies have revealed that mangroves are able to adapt to, and keep pace with local relative SLR through vertical surface elevation change (SEC), however data are lacking, with often only surface accretion rate (SAR) data available. We systematically review published studies of SEC and SAR from globally distributed monitoring sites using meta-analysis, and compare them with the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) SLR scenarios. Hydro-geomorphic setting plays an important role, with basin mangroves potentially less vulnerable to SLR through land building processes. We find that SAR in both basin and fringe mangroves can cope with low SLR scenario (RCP 2.6) throughout the 100 years projection period. However, SAR can only keep pace with high SLR scenario (RCP 8.5) up to year 2070 and 2055 in basin and fringe mangrove settings respectively. These were associated with potential sediment accumulation of 41 cm and 29 cm respectively from the baseline. Mangrove degradation promoted lowering trends of SEC, while mangrove management such as rehabilitation practice stimulated positive trends of SEC. Mangrove ecosystems may be vulnerable to contemporary SLR in small island locations such as the Caribbean, East Africa and parts of the Indo-Pacific that are dominated by fringe mangroves and where SEC cannot keep pace with both low and high IPCC AR5 SLR scenarios. A global expansion of current mangrove surface elevation monitoring effort is urgently needed in order to better assess the vulnerability of mangroves, and the factors affecting their resiliency in the face of rising sea levels.


Conservation Biology | 2016

Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia

Daniel A. Friess; Benjamin S. Thompson; Ben Brown; Ahmad Aldrie Amir; Clint Cameron; Heather J. Koldewey; Sigit D. Sasmito; Frida Sidik

Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them.


Science | 2012

Environment-friendly reform in Myanmar.

Jacob Phelps; Daniel A. Friess; Madhu Rao; Alan D. Ziegler

Decades of economic and political isolation have transformed Myanmar. Once a regional leader [and the worlds largest exporter of rice through the 1950s ([ 1 ][1])], Myanmar now has some of the lowest human development and governance indicators in the world ([ 2 ][2], [ 3 ][3]). Environmental


Remote Sensing | 2015

Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

Minerva Singh; Damian Evans; Daniel A. Friess; Boun Suy Tan; Chan Samean Nin

This study develops a modelling framework for utilizing very high-resolution (VHR) aerial imagery for monitoring stocks of above-ground biomass (AGB) in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM), Gabor wavelets and Fourier-based textural ordination (FOTO)) were used in conjunction with two different machine learning (ML)-based regression techniques (support vector regression (SVR) and random forest (RF) regression). These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE) and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i) horizontal canopy variables (i.e., canopy cover and texture variables) plus vertical canopy height; (ii) horizontal variables only; and (iii) texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

Collaboration


Dive into the Daniel A. Friess's collaboration.

Top Co-Authors

Avatar

Alan D. Ziegler

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ken W. Krauss

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Richards

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin S. Thompson

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Pierre Taillardat

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Spencer

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge