Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Lutterman is active.

Publication


Featured researches published by Daniel A. Lutterman.


Journal of the American Chemical Society | 2009

A self-healing oxygen-evolving catalyst.

Daniel A. Lutterman; Yogesh Surendranath; Daniel G. Nocera

A cobalt-phosphate water-oxidizing catalyst forms from the oxidation of Co(2+) to Co(3+) in the presence of phosphate. We have employed radioactive (57)Co and (32)P isotopes to probe the dynamics of this catalyst during water-oxidation catalysis. We show that the catalyst is self-healing and that phosphate is the crucial factor responsible for repair.


Journal of the American Chemical Society | 2012

Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst.

Yogesh Surendranath; Daniel A. Lutterman; Yi Liu; Daniel G. Nocera

The mechanism of nucleation, steady-state growth, and repair is investigated for an oxygen evolving catalyst prepared by electrodeposition from Co(2+) solutions in weakly basic electrolytes (Co-OEC). Potential step chronoamperometry and atomic force microscopy reveal that nucleation of Co-OEC is progressive and reaches a saturation surface coverage of ca. 70% on highly oriented pyrolytic graphite substrates. Steady-state electrodeposition of Co-OEC exhibits a Tafel slope approximately equal to 2.3 × RT/F. The electrochemical rate law exhibits a first order dependence on Co(2+) and inverse orders on proton (third order) and proton acceptor, methylphosphonate (first order for 1.8 mM ≤ [MeP(i)] ≤ 18 mM and second order dependence for 32 mM ≤ [MeP(i)] ≤ 180 mM). These electrokinetic studies, combined with recent XAS studies of catalyst structure, suggest a mechanism for steady state growth at intermediate MeP(i) concentration (1.8-18 mM) involving a rapid solution equilibrium between aquo Co(II) and Co(III) hydroxo species accompanied with a rapid surface equilibrium involving electrolyte dissociation and deprotonation of surface bound water. These equilibria are followed by a chemical rate-limiting step for incorporation of Co(III) into the growing cobaltate clusters comprising Co-OEC. At higher concentrations of MeP(i) ([MeP(i)] ≥ 32 mM), MePO(3)(2-) equilibrium binding to Co(II) in solution is suggested by the kinetic data. Consistent with the disparate pH profiles for oxygen evolution electrocatalysis and catalyst formation, NMR-based quantification of catalyst dissolution as a function of pH demonstrates functional stability and repair at pH values >6 whereas catalyst corrosion prevails at lower pH values. These kinetic insights provide a basis for developing and operating functional water oxidation (photo)anodes under benign pH conditions.


Journal of the American Chemical Society | 2011

Bidirectional and Unidirectional PCET in a Molecular Model of a Cobalt-Based Oxygen-Evolving Catalyst

Mark D. Symes; Yogesh Surendranath; Daniel A. Lutterman; Daniel G. Nocera

The oxidation of water to molecular oxygen is a kinetically demanding reaction that requires efficient coupling of proton and electron transfer. The key proton-coupled electron transfer (PCET) event in water oxidation mediated by a cobalt-phosphate-based heterogeneous catalyst is the one-electron, one-proton conversion of Co(III)-OH to Co(IV)-O. We now isolate the kinetics of this PCET step in a molecular Co(4)O(4) cubane model compound. Detailed electrochemical, stopped-flow, and NMR studies of the Co(III)-OH to Co(IV)-O reaction reveal distinct mechanisms for the unidirectional PCET self-exchange reaction and the corresponding bidirectional PCET. A stepwise mechanism, with rate-limiting electron transfer is observed for the bidirectional PCET at an electrode surface and in solution, whereas a concerted proton-electron transfer displaying a moderate KIE (4.3 ± 0.2), is observed for the unidirectional self-exchange reaction.


Journal of the American Chemical Society | 2016

Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

Jonathan R. Petrie; Valentino R. Cooper; J. W. Freeland; Tricia L. Meyer; Zhiyong Zhang; Daniel A. Lutterman; Ho Nyung Lee

Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of the eg orbitals, which can customize orbital asymmetry at the surface. Analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.


Inorganic Chemistry | 2010

Halogen photoreductive elimination from metal-metal bonded iridium(II)-gold(II) heterobimetallic complexes.

Thomas S. Teets; Daniel A. Lutterman; Daniel G. Nocera

Halogen oxidation of [Ir(I)Au(I)(dcpm)(2)(CO)X](PF(6)) (dcpm = bis(dicyclohexylphosphino)methane, X = Cl, Br) and [Ir(I)Au(I)(dppm)(2)(CN(t)Bu)(2)](PF(6))(2) (dppm = bis(diphenylphosphino)methane) furnishes the heretofore unknown class of d(7)-d(9) compounds comprising an Ir(II)Au(II) heterobimetallic core. A direct metal-metal bond is evident from a 0.2 A contraction in the intermetallic distance, as determined by X-ray crystallography. The photophysical consequence of iridium-gold bond formation, as elucidated by experimental and computational investigations, is an electronic structure dominated by a sigma --> sigma* transition that possesses significant ligand-to-metal charge transfer (LMCT) character. Accordingly, these compounds are non-emissive but photoreactive. Excitation of Ir(II)Au(II) complexes in the presence of a halogen trap prompts a net photoreductive elimination of halogen and the production of the two-electron reduced Ir(I)Au(I) species with about 10% quantum efficiency. The Ir(II)Au(II) complexes add to a growing library of d(7)-d(9) heterobimetallic species from which halogen elimination may be driven by a photon.


Journal of the American Chemical Society | 2013

Synthesis, Electrochemistry, and Photophysics of a Family of Phlorin Macrocycles That Display Cooperative Fluoride Binding

Allen J. Pistner; Daniel A. Lutterman; Michael Ghidiu; Ying-Zhong Ma; Joel Rosenthal

A homologous set of 5,5-dimethylphlorin macrocycles in which the identity of one aryl ring is systematically varied has been prepared. These derivatives contain ancillary pentafluorophenyl (3H(Phl(F))), mesityl (3H(Phl(Mes))), 2,6-bismethoxyphenyl (3H(Phl(OMe))), 4-nitrophenyl (3H(Phl(NO2))), or 4-tert-butylcarboxyphenyl (3H(Phl(CO2tBu))) groups at the 15-meso-position. These porphyrinoids were prepared in good yields (35-50%) and display unusual multielectron redox and photochemical properties. Each phlorin can be oxidized up to three times at modest potentials and can be reduced twice. The electron-donating and electron-releasing properties of the ancillary aryl substituent attenuate the potentials of these redox events; phlorins containing electron-donating aryl groups are easier to oxidize and harder to reduce, while the opposite trend is observed for phlorins containing electron-withdrawing functionalities. Phlorin substitution also has a pronounced effect on the observed photophysics, as introduction of electron-releasing aryl groups on the periphery of the macrocycle is manifest in larger emission quantum yields and longer fluorescence lifetimes. Each phlorin displays an intriguing supramolecular chemistry and can bind 2 equiv of fluoride. This binding is allosteric in nature, and the strength of halide binding correlates with the ability of the phlorin to stabilize the buildup of charge. Moreover, fluoride binding to generate complexes of the form 3H(Phl(R))·2F(-) modulates the redox potentials of the parent phlorin. As such, titration of phlorin with a source of fluoride represents a facile method to tune the ability of this class of porphyrinoid to absorb light and engage in redox chemistry.


Chemsuschem | 2013

Photo-active Cobalt Cubane Model of an Oxygen-Evolving Catalyst

Mark D. Symes; Daniel A. Lutterman; Thomas S. Teets; Bryce L. Anderson; John J. Breen; Daniel G. Nocera

A dyad complex has been constructed as a soluble molecular model of a heterogeneous cobalt-based oxygen-evolving catalyst (Co-OEC). To this end, the Co(4)O(4) core of a cobalt-oxo cubane was covalently appended to Re(I) photosensitisers. The resulting adduct was characterised both in the solid state (by X-ray diffraction) and in solution using a variety of techniques. In particular, the covalent attachment of the Re(I) moieties to the Co(4)O(4) core promotes emission quenching of the Re(I) photocentres, with implications for the energy and electron transduction process of Co-OEC-like catalysts.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger

Arturo A. Pizano; Daniel A. Lutterman; Patrick G. Holder; Thomas S. Teets; JoAnne Stubbe; Daniel G. Nocera

Photochemical radical initiation is a powerful tool for studying radical initiation and transport in biology. Ribonucleotide reductases (RNRs), which catalyze the conversion of nucleotides to deoxynucleotides in all organisms, are an exemplar of radical mediated transformations in biology. Class Ia RNRs are composed of two subunits: α2 and β2. As a method to initiate radical formation photochemically within β2, a single surface-exposed cysteine of the β2 subunit of Escherichia coli Class Ia RNR has been labeled (98%) with a photooxidant ([Re ] = tricarbonyl(1,10-phenanthroline)(methylpyridyl)rhenium(I)). The labeling was achieved by incubation of S355C-β2 with the 4-(bromomethyl)pyridyl derivative of [Re] to yield the labeled species, [Re]-S355C-β2. Steady-state and time-resolved emission experiments reveal that the metal-to-ligand charge transfer (MLCT) excited-state 3[Re ]∗ is not significantly perturbed after bioconjugation and is available as a phototrigger of tyrosine radical at position 356 in the β2 subunit; transient absorption spectroscopy reveals that the radical lives for microseconds. The work described herein provides a platform for photochemical radical initiation and study of proton-coupled electron transfer (PCET) in the β2 subunit of RNR, from which radical initiation and transport for this enzyme originates.


Inorganic Chemistry | 2012

Halogen oxidation and halogen photoelimination chemistry of a platinum-rhodium heterobimetallic core.

Timothy R. Cook; Brian D. McCarthy; Daniel A. Lutterman; Daniel G. Nocera

The heterobimetallic complexes, PtRh(tfepma)(2)(CN(t)Bu)X(3) (X = Cl, Br), are assembled by the treatment of Pt(cod)X(2) (cod =1,5-cyclooctadiene) with {Rh(cod)X}(2), in the presence of tert-butylisonitrile (CN(t)Bu) and tfepma (tfepma = bis(trifluoroethoxyl)phosphinomethylamine). The neutral complexes contain Pt-Rh single bonds with metal-metal separations of 2.6360(3) and 2.6503(7) Å between the square planar Pt and octahedral Rh centers for the Cl and Br complexes, respectively. Oxidation of the XPt(I)Rh(II)X(2) cores with suitable halide sources (PhICl(2) or Br(2)) furnishes PtRh(tfepma)(2)(CN(t)Bu)X(5), which preserves a Pt-Rh bond. For the chloride system, the initial oxidation product orients the platinum-bound chlorides in a meridional geometry, which slowly transforms to a facial arrangement in pentane solution as verified by X-ray crystal analysis. Irradiation of the mer- or fac-Cl(3)Pt(III)Rh(II)Cl(2) isomers with visible light in the presence of olefin promotes the photoelimination of halogen and regeneration of the reduced ClPt(I)Rh(II)Cl(2) core. In addition to exhibiting photochemistry similar to that of the chloride system, the oxidized bromide cores undergo thermal reduction chemistry in the presence of olefin with zeroth-order olefin dependence. Owing to an extremely high photoreaction quantum yield for the fac-ClPt(I)Rh(II)Cl(2) isomer, details of the X(2) photoelimination have been captured by transient absorption spectroscopy. We now report the first direct observation of the photointermediate that precedes halogen reductive elimination. The intermediate is generated promptly upon excitation (<8 ns), and halogen is eliminated from it with a rate constant of 3.6 × 10(4) s(-1). As M-X photoactivation and elimination is the critical step in HX splitting, these results establish a new guidepost for the design of HX splitting cycles for solar energy storage.


Biochemistry | 2009

Re(bpy)(CO)3CN as a probe of conformational flexibility in a photochemical ribonucleotide reductase.

Steven Y. Reece; Daniel A. Lutterman; Mohammad R. Seyedsayamdost; JoAnne Stubbe; Daniel G. Nocera

Photochemical ribonucleotide reductases (photoRNRs) have been developed to study the proton-coupled electron transfer (PCET) mechanism of radical transport in Escherichia coli class I ribonucleotide reductase (RNR). The transport of the effective radical occurs along several conserved aromatic residues across two subunits: beta2((*)Y122 --> W48 --> Y356) --> alpha2(Y731 --> Y730 --> C439). The current model for RNR activity suggests that radical transport is strongly controlled by conformational gating. The C-terminal tail peptide (Y-betaC19) of beta2 is the binding determinant of beta2 to alpha2 and contains the redox active Y356 residue. A photoRNR has been generated synthetically by appending a Re(bpy)(CO)(3)CN ([Re]) photo-oxidant next to Y356 of the 20-mer peptide. Emission from the [Re] center dramatically increases upon peptide binding, serving as a probe for conformational dynamics and the protonation state of Y356. The diffusion coefficient of [Re]-Y-betaC19 has been measured (k(d1) = 6.1 x 10(-7) cm(-1) s(-1)), along with the dissociation rate constant for the [Re]-Y-betaC19-alpha2 complex (7000 s(-1) > k(off) > 400 s(-1)). Results from detailed time-resolved emission and absorption spectroscopy reveal biexponential kinetics, suggesting a large degree of conformational flexibility in the [Re]-Y-betaC19-alpha2 complex that engenders partitioning of the N-terminus of the peptide into both bound and solvent-exposed fractions.

Collaboration


Dive into the Daniel A. Lutterman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying-Zhong Ma

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven Y. Reece

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yogesh Surendranath

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge