Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Powell is active.

Publication


Featured researches published by Daniel A. Powell.


Science | 2013

Cytoplasmic LPS Activates Caspase-11: Implications in TLR4-Independent Endotoxic Shock

Jon A. Hagar; Daniel A. Powell; Youssef Aachoui; Robert K. Ernst; Edward A. Miao

Move Over, TLR4 The innate immune system senses bacterial lipopolysaccharide (LPS) through Toll-like receptor 4 (TLR4) (see the Perspective by Kagan). However, Kayagaki et al. (p 1246, published online 25 July) and Hagar et al. (p. 1250) report that the hexa-acyl lipid A component of LPS from Gramnegative bacteria is able to access the cytoplasm and activate caspase-11 to signal immune responses independently of TLR4. Mice that lack caspase-11 are resistant to LPS-induced lethality, even in the presence of TLR4. Cytoplasmic lipopolysaccharide from Gram-negative bacteria can activate the innate immune system directly. [Also see Perspective by Kagan] Inflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS.


Proceedings of the National Academy of Sciences of the United States of America | 2012

LPS remodeling is an evolved survival strategy for bacteria

Yanyan Li; Daniel A. Powell; Scott A. Shaffer; David A. Rasko; Mark R. Pelletier; John D. Leszyk; Alison J. Scott; Ali Masoudi; David R. Goodlett; Christian R. H. Raetz; Robert K. Ernst

Maintenance of membrane function is essential and regulated at the genomic, transcriptional, and translational levels. Bacterial pathogens have a variety of mechanisms to adapt their membrane in response to transmission between environment, vector, and human host. Using a well-characterized model of lipid A diversification (Francisella), we demonstrate temperature-regulated membrane remodeling directed by multiple alleles of the lipid A-modifying N-acyltransferase enzyme, LpxD. Structural analysis of the lipid A at environmental and host temperatures revealed that the LpxD1 enzyme added a 3-OH C18 acyl group at 37 °C (host), whereas the LpxD2 enzyme added a 3-OH C16 acyl group at 18 °C (environment). Mutational analysis of either of the individual Francisella lpxD genes altered outer membrane (OM) permeability, antimicrobial peptide, and antibiotic susceptibility, whereas only the lpxD1-null mutant was attenuated in mice and subsequently exhibited protection against a lethal WT challenge. Additionally, growth-temperature analysis revealed transcriptional control of the lpxD genes and posttranslational control of the LpxD1 and LpxD2 enzymatic activities. These results suggest a direct mechanism for LPS/lipid A-level modifications resulting in alterations of membrane fluidity, as well as integrity and may represent a general paradigm for bacterial membrane adaptation and virulence-state adaptation.


PLOS ONE | 2009

Pertussis Toxin Stimulates IL-17 Production in Response to Bordetella pertussis Infection in Mice

Charlotte Andreasen; Daniel A. Powell; Nicholas H. Carbonetti

In a mouse model of respiratory tract infection by Bordetella pertussis, bacteria multiply in the airways over the first week and are then cleared over the next 3–4 weeks by the host immune response. Pertussis toxin (PT), a virulence factor secreted exclusively by B. pertussis, promotes bacterial growth in the airways by suppression and modulation of host immune responses. By comparison of wild type and PT-deficient strains, we examined the role of PT in modulating airway cytokine and chemokine responses affecting neutrophil recruitment during B. pertussis infection in mice. We found that, despite early inhibition of neutrophil recruitment by PT, high numbers of neutrophils were recruited to the airways by 4 days post-infection with the wild type strain, but not with the PT-deficient strain, and that this correlated with upregulation of neutrophil-attracting chemokine gene expression. In addition, there was similar upregulation of genes expressing the cytokines IL-17A (IL-17), TNF-α and IFN-γ, indicating a mixed Th1/Th17 response. Expression of IL-6, a cytokine involved in Th17 induction, was upregulated earlier than the IL-17 response. We showed that PT, rather than bacterial numbers, was important for induction of these responses. Flow cytometric analysis revealed that the IL-17-producing cells were macrophages and neutrophils as well as T cells, and were present predominantly in the airways rather than the lung tissue. Antibody neutralization of IL-17 significantly reduced chemokine gene expression and neutrophil recruitment to the airways, but only modestly increased peak bacterial loads. These data indicate that PT stimulates inflammatory responses by induction of Th1- and Th17-associated cytokines, including IL-17, during B. pertussis infection in mice, but a role for IL-17 in protection against the infection remains to be established.


Infection and Immunity | 2015

The prrF-Encoded Small Regulatory RNAs Are Required for Iron Homeostasis and Virulence of Pseudomonas aeruginosa

Alexandria A. Reinhart; Daniel A. Powell; Angela T. Nguyen; Maura J. O'Neill; Louise Djapgne; Angela Wilks; Robert K. Ernst; Amanda G. Oglesby-Sherrouse

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosas iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence.


Infection and Immunity | 2012

Role of Francisella Lipid A Phosphate Modification in Virulence and Long-Term Protective Immune Responses

Duangjit Kanistanon; Daniel A. Powell; Adeline M. Hajjar; Mark R. Pelletier; Ilana E. Cohen; Sing Sing Way; Shawn J. Skerrett; Christian R. H. Raetz; Robert K. Ernst

ABSTRACT Lipopolysaccharide (LPS) structural modifications have been shown to specifically affect the pathogenesis of many Gram-negative pathogens. In Francisella, modification of the lipid A component of LPS resulted in a molecule with no to low endotoxic activity. The role of the terminal lipid A phosphates in host recognition and pathogenesis was determined using a Francisella novicida mutant that lacked the 4′ phosphatase enzyme (LpxF). The lipid A of this strain retained the phosphate moiety at the 4′ position and the N-linked fatty acid at the 3′ position on the diglucosamine backbone. Studies were undertaken to determine the pathogenesis of this mutant strain via the pulmonary and subcutaneous routes of infection. Mice infected with the lpxF-null F. novicida mutant by either route survived primary infection and subsequently developed protective immunity against a lethal wild-type (WT) F. novicida challenge. To determine the mechanism(s) by which the host controlled primary infection by the lpxF-null mutant, the role of innate immune components, including Toll-like receptor 2 (TLR2), TLR4, caspase-1, MyD88, alpha interferon (IFN-α), and gamma interferon(IFN-γ), was examined using knockout mice. Interestingly, only the IFN-γ knockout mice succumbed to a primary lpxF-null F. novicida mutant infection, highlighting the importance of IFN-γ production. To determine the role of components of the host adaptive immune system that elicit the long-term protective immune response, T- and B-cell deficient RAG1−/− mice were examined. All mice survived primary infection; however, RAG1−/− mice did not survive WT challenge, highlighting a role for T and B cells in the protective immune response.


Fems Immunology and Medical Microbiology | 2015

Site-specific activity of the acyltransferases HtrB1 and HtrB2 in Pseudomonas aeruginosa lipid A biosynthesis

Lauren E. Hittle; Daniel A. Powell; Jace W. Jones; Majid Tofigh; David R. Goodlett; Samuel M. Moskowitz; Robert K. Ernst

Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative pathogen associated with nosocomial infections, acute infections and chronic lung infections in patients with cystic fibrosis. The ability of PA to cause infection can be attributed to its ability to adapt to a multitude of environments. Modification of the lipid A portion of lipopolysaccharide (LPS) is a vital mechanism Gram-negative pathogens use to remodel the outer membrane in response to environmental stimuli. Lipid A, the endotoxic moiety of LPS, is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria making it a critical factor for bacterial adaptation. One way PA modifies its lipid A is through the addition of laurate and 2-hydroxylaurate. This secondary or late acylation is carried out by the acyltransferase, HtrB (LpxL). Analysis of the PA genome revealed the presence of two htrB homologs, PA0011 (htrB1) and PA3242 (htrB2). In this study, we were able to show that each gene identified is responsible for site-specific modification of lipid A. Additionally, deletions of either gene altered resistance to specific classes of antibiotics, cationic antimicrobial peptides and increased membrane permeability suggesting a role for these enzymes in maintaining optimal membrane organization and integrity.


Archive | 2015

METHOD OF EXTRACTING LIPIDS FROM MICROBES

Robert K. Ernst; David R. Goodlett; Daniel A. Powell


Journal of Immunology | 2014

Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock (INM6P.406)

Edward A. Miao; Jon A. Hagar; Daniel A. Powell; Youssef Aachoui; Robert K. Ernst


Archive | 2013

Regulation of Lipopolysaccharide Modifications and Antimicrobial Peptide Resistance

Robert K. Ernst; Daniel A. Powell; Lauren E. Hittle; Joanna B. Goldberg; Erica N. Kintz


Virulence | 2012

Turning up Francisella pathogenesis: the LPS thermostat.

Daniel A. Powell; Yanyan Li; Robert K. Ernst

Collaboration


Dive into the Daniel A. Powell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward A. Miao

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John D. Leszyk

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Jon A. Hagar

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge