Daniel A. Scheiman
Glenn Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel A. Scheiman.
ACS Applied Materials & Interfaces | 2009
Baochau N. Nguyen; Mary Ann B. Meador; Marissa E. Tousley; Brian Shonkwiler; Linda McCorkle; Daniel A. Scheiman; Anna Palczer
The effect of incorporating an organic linking group, 1,6-bis(trimethoxysilyl)hexane (BTMSH), into the underlying silica structure of a styrene cross-linked silica aerogel is examined. Vinyltrimethoxysilane (VTMS) is used to provide a reactive site on the silica backbone for styrene polymerization. Replacement of up to 88 mol % of the silicon from tetramethoxyorthosilicate with silicon derived from BTMSH and VTMS during the making of silica gels improves the elastic behavior in some formulations of the cross-linked aerogels, as evidenced by measurement of the recovered length after compression of samples to 25% strain. This is especially true for some higher density formulations, which recover nearly 100% of their length after compression to 25% strain twice. The compressive modulus of the more elastic monoliths ranged from 0.2 to 3 MPa. Although some of these monoliths had greatly reduced surface areas, changing the solvent used to produce the gels from methanol to ethanol increased the surface area in one instance from 6 to 220 m(2)/g with little affect on the modulus, elastic recovery, porosity, or density.
Journal of Materials Chemistry | 2006
Faysal Ilhan; Eve F. Fabrizio; Linda McCorkle; Daniel A. Scheiman; Amala Dass; Anna Palczer; Mary Ann B. Meador; James C. Johnston; Nicholas Leventis
We describe a three-dimensional core–shell structure where the core is the assembly of nanoparticles that comprises the skeletal framework of a typical silica aerogel, and the shell is polystyrene. Specifically, the mesoporous surfaces of silica were first modified with amines by co-gelation of tetramethylorthosilicate (TMOS) and 3-aminopropyltriethoxysilane (APTES). Next, styrene moieties were attached to the amines by reaction with p-chloromethylstyrene. Finally, dangling styrene moieties were crosslinked by a free-radical polymerization process initiated by AIBN and styrene, p-chloromethylstyrene or 2,3,4,5-pentafluorostyerene introduced in the mesopores. Polystyrene crosslinked aerogels are mechanically strong, lightweight (0.41–0.77 g cm−3), highly porous materials (they consist of ca. 63% empty space, with a BET surface areas in the range of 213–393 m2 g−1). Their thermal conductivity (0.041 W m−1 K−1) is comparable to that of glass wool. Hydrophobicity, however, is the property that sets the new material apart from analogous polyurea and epoxy crosslinked aerogels. The contact angles of water droplets on disks cut from larger monoliths are >120°. (By comparison, the contact angle with polyurea crosslinked aerogels is only ca. 60°.) Polystyrene crosslinked aerogel monoliths float on water indefinitely, while their polyurea counterparts absorb water and sink within minutes.
Journal of Polymer Science Part A | 1999
Mary Jo Turk; Asif S. Ansari; William B. Alston; Gloria S. Gahn; Aryeh A. Frimer; Daniel A. Scheiman
Thermogravimetric analysis (TGA) has been used for many years to evaluate polymer thermal stability. The objective of this study is to determine if weight-loss curves from TGA and isothermal TGA (IGA) can be used to determine degradation activation energies and thus rank the thermal stability (TS) and thermooxidative stability (TOS) for selected polyimides. Two high-temperature stable addition-cured polyimides and two aromatic condensation polyimides, all four containing fluorinated connecting linkages in the dianhydride monomers, were compared. Three TGA kinetic methods (Coats/Redfern, Ingraham/Marier, Horowitz/Metzger) were used to determine the activation energy for decomposition in air. The results were then used to rank polyimide stability compared to more traditional rankings based on long-term isothermal air aging weight-loss (IWL) studies and thermal decomposition temperatures (Td) from TGA data. Use of TGA coupled to a Fourier transform infrared (TGA–FTIR) spectrophotometer allowed for the simultaneous identification and relative quantification of evolved decomposition products (CO2, CO, ArNCO, and CHF3) of the four polyimides degraded in air or nitrogen. Isothermal TGA–FTIR (IGA–FTIR) was also done in air to determine the relative rate of product evolution at a constant temperature. Activation energies using TGA and IGA data were determined and then compared with IWL values for the degradation of the polyimide to examine for correlations of real-life thermal oxidative aging to accelerated aging techniques. The Coats/Redfern method and Td were found to best reproduce stability rankings of those from long-term, high-temperature IWL studies. Together, they may provide a time-saving technique to evaluate polyimide thermal oxidative stability.
Journal of Materials Chemistry | 2013
Jiao Guo; Baochau N. Nguyen; Lichun Li; Mary Ann B. Meador; Daniel A. Scheiman; Miko Cakmak
Silica aerogels are comprised of highly porous three-dimensional networks. They typically are very fragile and brittle due to the inter-particle connections in the pearl-necklace-like fractal network. This behavior prevents their wider utility. The present study aims to reinforce the silica-based gel to improve the poor mechanical strength through crosslinking the silica particles with polyimide and incorporating Lucentite STN clay into the skeletal silica–polyimide network. 3-Aminopropyltriethoxysilane (APTES) end-capped polyamic acid oligomers were first formed followed by gelation with TMOS at a range of clay concentrations to generate a silica network. The incorporation of clay leads to slightly lower BET surface area with little effect on shrinkage, porosity and density. Microscopy revealed that the aerogel preferentially grows from the edges of well dispersed clay particles while minimal growth occurs from clay surfaces. The formation of covalent bonds and hydrogen bonding through the OH functionalized clay edges is thought to enhance the connectivity with silica network and clay, leading to a substantial reinforcement effect as evidenced by an increase in modulus.
ACS Applied Materials & Interfaces | 2017
Jarrod C. Williams; Baochau N. Nguyen; Linda McCorkle; Daniel A. Scheiman; Justin S. Griffin; Stephen A. Steiner; Mary Ann B. Meador
We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPonts Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl2) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm3, depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is desirable but trapping of heat may be undesirable-applications where other polymer aerogels have to date otherwise been unsuitable-creating new opportunities for commercialization of aerogels.
RSC Advances | 2016
Haiquan Guo; Mary Ann B. Meador; Linda McCorkle; Daniel A. Scheiman; Jordan D. McCrone; Brittany Wilkewitz
A series of aerogels was fabricated by cross-linking amine end-capped polyimide oligomers with poly(maleic anhydride)s. Poly(maleic anhydride)s are commercially available with various aliphatic side groups and are less costly than other cross-linkers used for polyimide aerogels. Thus they are used here as possible substitutes to form cross-linked polyimide aerogels at a lower cost. The effects of the different side groups of the cross-linkers and oligomer backbone structures on the density, porosity, shrinkage, surface area, morphology, and mechanical properties of the aerogels are discussed. Aerogels with low density (0.12–0.17 g cm−3), high porosity (>88%), high surface area (360–550 m2 g−1), and Youngs modulus (2–60 MPa) were produced in the study. The thermal stability and water uptake of the samples were also studied. The aerogels may be potential candidates in a variety of aeronautic and space applications, such as space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, and cryotank insulation for advanced space propulsion systems.
Journal of Polymer Science Part A | 1999
Kathy C. Chuang; Daniel A. Scheiman; Joyce Fu; Marcus Crawford
Thermoplastic and thermoset polyimides derived from 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP) and 4,4′-bis(4-aminophenoxy)-2,2′-dimethylbiphenyl (BAPD) were prepared and characterized. Their physical and thermal properties as well as the polyelectrolyte effect exhibited by BTDA–BAPP polyamic acids in NMP solution were discussed.
Journal of Thermophysics and Heat Transfer | 2014
Dean M. Tigelaar; Matthew J. Degges; Kathy C. Chuang; Frances I. Hurwitz; Kenneth K. Kuo; Daniel A. Scheiman; Linda McCorkle; Derek J. Quade; Stephanie L. Vivod; Scott C. Splinter
A novel series of ablative composites containing a hyperbranched polyazomethine synthesized inside a carbon fiber preform (HyPAZA) were prepared, which have similar density to phenolic impregnated carbon ablators (∼0.3 g/cc). A novel method of synthesizing strong hyperbranched polyazomethine thermosets has been developed, enabling polyazomethines to be studied in ablators for the first time. Several formulations of HyPAZA perform better than the phenolic impregnated carbon ablator in terms of polymer char yield, composite mechanical strength, CO2 laser ablation tests at heat fluxes of 550 and 1100 W/cm2, and small-scale arcjet testing at a heat flux of 400 W/cm2. Char yields of hyperbranched polyazomethines were as high as 79% at 1000°C by thermogravimetric analysis. This is one of the highest char yields ever reported for a fully organic polymer. Some HyPAZA composites are over 10 times stronger than the carbon fiber preform, as determined by compression tests. Specimens were also tested in an arcjet ...
Journal of Applied Polymer Science | 2006
William B. Alston; Daniel A. Scheiman; Gloria S. Sivko
Polymerization of monomeric reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to 4 years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were correlated versus room temperature storage time. Composite processing cycles were developed and six-ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS), and modulus (FM), long term (1000 h at 316°C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 h aging at 316°C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude, while maintaining composite thermal and mechanical properties.
ACS Nano | 2012
Mitra Yoonessi; Ying Shi; Daniel A. Scheiman; Marisabel Lebrón-Colón; Dean M. Tigelaar; R. A. Weiss; Michael A. Meador