Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel A. Starr is active.

Publication


Featured researches published by Daniel A. Starr.


Annual Review of Cell and Developmental Biology | 2010

Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges.

Daniel A. Starr; Heidi N. Fridolfsson

The nuclear envelope links the cytoskeleton to structural components of the nucleus. It functions to coordinate nuclear migration and anchorage, organize chromatin, and aid meiotic chromosome pairing. Forces generated by the cytoskeleton are transferred across the nuclear envelope to the nuclear lamina through a nuclear-envelope bridge consisting of SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1 and Syne/Nesprin homology) proteins. Some KASH-SUN combinations connect microtubules, centrosomes, actin filaments, or intermediate filaments to the surface of the nucleus. Other combinations are used in cell cycle control, nuclear import, or apoptosis. Interactions between the cytoskeleton and the nucleus also affect global cytoskeleton organization. SUN and KASH proteins were identified through genetic screens for mispositioned nuclei in model organisms. Knockouts of SUN or KASH proteins disrupt neurological and muscular development in mice. Defects in SUN and KASH proteins have been linked to human diseases including muscular dystrophy, ataxia, progeria, lissencephaly, and cancer.


Journal of Cell Science | 2003

ANChors away: an actin based mechanism of nuclear positioning

Daniel A. Starr; Min Han

Mechanisms for nuclear migration and nuclear anchorage function together to control nuclear positioning. Both tubulin and actin networks play important roles in nuclear positioning. The actin cytoskeleton has been shown to position nuclei in a variety of systems from yeast to plants and animals. It can either act as a stable skeleton to anchor nuclei or supply the active force to move nuclei. Two C. elegans genes and their homologues play important roles in these processes. Syne/ANC-1 anchors nuclei by directly tethering the nuclear envelope to the actin cytoskeleton, and UNC-84/SUN functions at the nuclear envelope to recruit Syne/ANC-1.


Journal of Cell Science | 2009

A nuclear-envelope bridge positions nuclei and moves chromosomes

Daniel A. Starr

Positioning the nucleus is essential for the formation of polarized cells, pronuclear migration, cell division, cell migration and the organization of specialized syncytia such as mammalian skeletal muscles. Proteins that are required for nuclear positioning also function during chromosome movement and pairing in meiosis. Defects in these processes lead to human diseases including laminopathies. To properly position the nucleus or move chromosomes within the nucleus, the cell must specify the outer surface of the nucleus and transfer forces across both membranes of the nuclear envelope. KASH proteins are specifically recruited to the outer nuclear membrane by SUN proteins, which reside in the inner nuclear membrane. KASH and SUN proteins physically interact in the perinuclear space, forming a bridge across the two membranes of the nuclear envelope. The divergent N-terminal domains of KASH proteins extend from the surface of the nucleus into the cytoplasm and interact with the cytoskeleton, whereas the N-termini of SUN proteins extend into the nucleoplasm to interact with the lamina or chromatin. The bridge of SUN and KASH across the nuclear envelope functions to transfer forces that are generated in the cytoplasm into the nucleoplasm during nuclear migration, nuclear anchorage, centrosome attachment, intermediate-filament association and telomere clustering.


Cell | 2011

A High-Resolution C. elegans Essential Gene Network Based on Phenotypic Profiling of a Complex Tissue

Rebecca A. Green; Huey Ling Kao; Anjon Audhya; Swathi Arur; Jonathan R. Mayers; Heidi N. Fridolfsson; Monty Schulman; Siegfried Schloissnig; Sherry Niessen; Kimberley Laband; Shaohe Wang; Daniel A. Starr; Anthony A. Hyman; Tim Schedl; Arshad Desai; Fabio Piano; Kristin C. Gunsalus; Karen Oegema

High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach-profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes-pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.


Journal of Cell Biology | 2010

Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei

Heidi N. Fridolfsson; Daniel A. Starr

The molecular motors kinesin-1 dynein navigate migrating nuclei around cytoplasmic roadblocks.


Current Opinion in Cell Biology | 2013

Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope.

Erin C. Tapley; Daniel A. Starr

The nuclear-cytoskeleton connection influences many aspects of cellular architecture, including nuclear positioning, the stiffness of the global cytoskeleton, and mechanotransduction. Central to all of these processes is the assembly and function of conserved SUN-KASH bridges, or LINC complexes, that span the nuclear envelope. Recent studies provide details of the higher order assembly and targeting of SUN proteins to the inner nuclear membrane. Structural studies characterize SUN-KASH interactions that form the central link of the nuclear-envelope bridge. KASH proteins at the outer nuclear membrane link the nuclear envelope to the cytoskeleton where forces are generated to move nuclei. Significantly, SUN proteins were recently shown to contribute to the progression of laminopathies.


Developmental Biology | 2010

UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration.

Heidi N. Fridolfsson; Nina Ly; Marina Meyerzon; Daniel A. Starr

Nuclei migrate during many events, including fertilization, establishment of polarity, differentiation, and cell division. The Caenorhabditis elegans KASH protein UNC-83 localizes to the outer nuclear membrane where it recruits kinesin-1 to provide the major motor activity required for nuclear migration in embryonic hyp7 cells. Here we show that UNC-83 also recruits two dynein-regulating complexes to the cytoplasmic face of the nucleus that play a regulatory role. One consists of the NudE homolog NUD-2 and the NudF/Lis1/Pac1 homolog LIS-1, and the other includes dynein light chain DLC-1, the BicaudalD homolog BICD-1, and the Egalitarian homologue EGAL-1. Genetic disruption of any member of these two complexes caused nuclear migration defects that were enhanced in some double mutant animals, suggesting that BICD-1 and EGAL-1 function in parallel to NUD-2. Dynein heavy chain mutant animals also had a nuclear migration defect, suggesting these complexes function through dynein. Deletion analysis indicated that independent domains of UNC-83 interact with kinesin and dynein. These data suggest a model where UNC-83 acts as the cargo-specific adaptor between the outer nuclear membrane and the microtubule motors kinesin-1 and dynein. Kinesin-1 functions as the major force generator during nuclear migration, while dynein is involved in regulation of bidirectional transport of the nucleus.


Development | 2009

UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration

Marina Meyerzon; Heidi N. Fridolfsson; Nina Ly; Francis J. McNally; Daniel A. Starr

Intracellular nuclear migration is essential for many cellular events including fertilization, establishment of polarity, division and differentiation. How nuclei migrate is not understood at the molecular level. The C. elegans KASH protein UNC-83 is required for nuclear migration and localizes to the outer nuclear membrane. UNC-83 interacts with the inner nuclear membrane SUN protein UNC-84 and is proposed to connect the cytoskeleton to the nuclear lamina. Here, we show that UNC-83 also interacts with the kinesin-1 light chain KLC-2, as identified in a yeast two-hybrid screen and confirmed by in vitro assays. UNC-83 interacts with and recruits KLC-2 to the nuclear envelope in a heterologous tissue culture system. Additionally, analysis of mutant phenotypes demonstrated that both KLC-2 and the kinesin-1 heavy chain UNC-116 are required for nuclear migration. Finally, the requirement for UNC-83 in nuclear migration could be partially bypassed by expressing a synthetic outer nuclear membrane KLC-2::KASH fusion protein. Our data support a model in which UNC-83 plays a central role in nuclear migration by acting to bridge the nuclear envelope and as a kinesin-1 cargo-specific adaptor so that motor-generated forces specifically move the nucleus as a single unit.


Molecular Biology of the Cell | 2011

Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization

Joshua T. Morgan; Emily R. Pfeiffer; Twanda L. Thirkill; Priyadarsini Kumar; Gordon Peng; Heidi N. Fridolfsson; Gordon C. Douglas; Daniel A. Starr; Abdul I. Barakat

Nesprin-3, a protein that links intermediate filaments to the nucleus, plays a role in vascular endothelial cell (EC) function. Nesprin-3 regulates EC morphology, perinuclear cytoskeletal organization, centrosome–nuclear connectivity, and flow-induced cell polarization and migration.


Current Opinion in Cell Biology | 2014

KASHing up with the nucleus: Novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus

G. W. Gant Luxton; Daniel A. Starr

Nuclear-cytoskeletal connections are central to fundamental cellular processes, including nuclear positioning and chromosome movements in meiosis. The cytoskeleton is coupled to the nucleoskeleton through conserved KASH-SUN bridges, or LINC complexes, that span the nuclear envelope. KASH proteins localize to the outer nuclear membrane where they connect the nucleus to the cytoskeleton. New findings have expanded the functional diversity of KASH proteins, showing that they interact with microtubule motors, actin, intermediate filaments, a nonconventional myosin, RanGAP, and each other. The role of KASH proteins in cellular mechanics is discussed. Genetic mutations in KASH proteins are associated with autism, hearing loss, cancer, muscular dystrophy and other diseases.

Collaboration


Dive into the Daniel A. Starr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Han

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Erin C. Tapley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Ly

University of California

View shared research outputs
Top Co-Authors

Avatar

Christian J. Malone

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge