Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Abásolo is active.

Publication


Featured researches published by Daniel Abásolo.


IEEE Transactions on Biomedical Engineering | 2006

Interpretation of the Lempel-Ziv Complexity Measure in the Context of Biomedical Signal Analysis

Mateo Aboy; Roberto Hornero; Daniel Abásolo; Daniel Álvarez

Lempel-Ziv complexity (LZ) and derived LZ algorithms have been extensively used to solve information theoretic problems such as coding and lossless data compression. In recent years, LZ has been widely used in biomedical applications to estimate the complexity of discrete-time signals. Despite its popularity as a complexity measure for biosignal analysis, the question of LZ interpretability and its relationship to other signal parameters and to other metrics has not been previously addressed. We have carried out an investigation aimed at gaining a better understanding of the LZ complexity itself, especially regarding its interpretability as a biomedical signal analysis technique. Our results indicate that LZ is particularly useful as a scalar metric to estimate the bandwidth of random processes and the harmonic variability in quasi-periodic signals


Physiological Measurement | 2006

Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy

Javier Escudero; Daniel Abásolo; Roberto Hornero; Pedro Espino; María López

The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimers disease (AD) patients using multiscale entropy (MSE). MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by means of several coarse-grained sequences formed from the analysed signals. We recorded the EEGs from 19 scalp electrodes in 11 AD patients and 11 age-matched controls and estimated the MSE profile for each epoch of the EEG recordings. The shape of the MSE profiles reveals the EEG complexity, and it suggests that the EEG contains information in deeper scales than the smallest one. Moreover, the results showed that the EEG background activity is less complex in AD patients than control subjects. We found significant differences between both subject groups at electrodes F3, F7, Fp1, Fp2, T5, T6, P3, P4, O1 and O2 (p-value < 0.01, Students t-test). These findings indicate that the EEG complexity analysis performed on deeper time scales by MSE may be a useful tool in order to increase our knowledge of AD.


Philosophical Transactions of the Royal Society A | 2009

Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease

Roberto Hornero; Daniel Abásolo; Javier Escudero; Carlos Gómez

The aim of the present study is to show the usefulness of nonlinear methods to analyse the electroencephalogram (EEG) and magnetoencephalogram (MEG) in patients with Alzheimers disease (AD). The following nonlinear methods have been applied to study the EEG and MEG background activity in AD patients and control subjects: approximate entropy, sample entropy, multiscale entropy, auto-mutual information and Lempel–Ziv complexity. We discuss why these nonlinear methods are appropriate to analyse the EEG and MEG. Furthermore, the performance of all these methods has been compared when applied to the same databases of EEG and MEG recordings. Our results show that EEG and MEG background activities in AD patients are less complex and more regular than in healthy control subjects. In line with previous studies, our work suggests that nonlinear analysis techniques could be useful in AD diagnosis.


Computer Methods and Programs in Biomedicine | 2009

Neural network based detection of hard exudates in retinal images

María García; Clara I. Sánchez; María López; Daniel Abásolo; Roberto Hornero

Diabetic retinopathy (DR) is an important cause of visual impairment in developed countries. Automatic recognition of DR lesions in fundus images can contribute to the diagnosis of the disease. The aim of this study is to automatically detect one of these lesions, hard exudates (EXs), in order to help ophthalmologists in the diagnosis and follow-up of the disease. We propose an algorithm which includes a neural network (NN) classifier for this task. Three NN classifiers were investigated: multilayer perceptron (MLP), radial basis function (RBF) and support vector machine (SVM). Our database was composed of 117 images with variable colour, brightness, and quality. 50 of them (from DR patients) were used to train the NN classifiers and 67 (40 from DR patients and 27 from healthy retinas) to test the method. Using a lesion-based criterion, we achieved a mean sensitivity (SE(l)) of 88.14% and a mean positive predictive value (PPV(l)) of 80.72% for MLP. With RBF we obtained SE(l)=88.49% and PPV(l)=77.41%, while we reached SE(l)=87.61% and PPV(l)=83.51% using SVM. With an image-based criterion, a mean sensitivity (SE(i)) of 100%, a mean specificity (SP(i)) of 92.59% and a mean accuracy (AC(i)) of 97.01% were obtained with MLP. Using RBF we achieved SE(i)=100%, SP(i)=81.48% and AC(i)=92.54%. With SVM the image-based results were SE(i)=100%, SP(i)=77.78% and AC(i)=91.04%.


IEEE Transactions on Biomedical Engineering | 2007

Utility of Approximate Entropy From Overnight Pulse Oximetry Data in the Diagnosis of the Obstructive Sleep Apnea Syndrome

Roberto Hornero; D. Álvarez; Daniel Abásolo; F. del Campo; Carlos Zamarrón

Approximate entropy (ApEn) is a family of statistics introduced as a quantification of regularity in time series without any a priori knowledge about the system generating them. The aim of this preliminary study was to assess whether a time series analysis of arterial oxygen saturation (SaO2) signals from overnight pulse oximetry by means of ApEn could yield essential information on the diagnosis of obstructive sleep apnea (OSA) syndrome. We analyzed SaO2 signals from 187 subjects: 111 with a positive diagnosis of OSA and 76 with a negative diagnosis of OSA. We divided our data in a training set (44 patients with OSA Positive and 30 patients with OSA Negative) and a test set (67 patients with OSA Positive and 46 patients with OSA Negative). The training set was used for algorithm development and optimum threshold selection. Results showed that recurrence of apnea events in patients with OSA determined a significant increase in ApEn values. This method was assessed prospectively using the test dataset, where we obtained 82.09% sensitivity and 86.96% specificity. We conclude that ApEn analysis of SaO2 from pulse oximetric recording could be useful in the study of OSA


Physiological Measurement | 2006

Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection.

Daniel Álvarez; Roberto Hornero; Daniel Abásolo; F. del Campo; Carlos Zamarrón

Nocturnal oximetry is an attractive option for the diagnosis of obstructive sleep apnoea (OSA) syndrome because of its simplicity and low cost compared to polysomnography (PSG). The present study assesses nonlinear analysis of blood oxygen saturation (SaO(2)) from nocturnal oximetry as a diagnostic test to discriminate between OSA positive and OSA negative patients. A sample of 187 referred outpatients, clinically suspected of having OSA, was studied using nocturnal oximetry performed simultaneously with complete PSG. A positive OSA diagnosis was found for 111 cases, while the remaining 76 cases were classified as OSA negative. The following oximetric indices were obtained: cumulative time spent below a saturation of 90% (CT90), oxygen desaturation indices of 4% (ODI4), 3% (ODI3) and 2% (ODI2) and the delta index (Delta index). SaO(2) records were subsequently processed applying two nonlinear methods: central tendency measure (CTM) and Lempel-Ziv (LZ) complexity. Significant differences (p < 0.01) were found between OSA positive and OSA negative patients. Using CTM we obtained a sensitivity of 90.1% and a specificity of 82.9%, while with LZ the sensitivity was 86.5% and the specificity was 77.6%. CTM and LZ accuracies were higher than those provided by ODI4, ODI3, ODI2 and CT90. The results suggest that nonlinear analysis of SaO(2) signals from nocturnal oximetry could yield useful information in OSA diagnosis.


IEEE Transactions on Biomedical Engineering | 2006

Variability, regularity, and complexity of time series generated by schizophrenic patients and control subjects

Roberto Hornero; Daniel Abásolo; Natalia Jimeno; Clara I. Sánchez; Jesús Poza; Mateo Aboy

We analyzed time series generated by 20 schizophrenic patients and 20 sex- and age-matched control subjects using three nonlinear methods of time series analysis as test statistics: central tendency measure (CTM) from the scatter plots of first differences of data, approximate entropy (ApEn), and Lempel-Ziv (LZ) complexity. We divided our data into a training set (10 patients and 10 control subjects) and a test set (10 patients and 10 control subjects). The training set was used for algorithm development and optimum threshold selection. Each method was assessed prospectively using the test dataset. We obtained 80% sensitivity and 90% specificity with LZ complexity, 90% sensitivity, and 60% specificity with ApEn, and 70% sensitivity and 70% specificity with CTM. Our results indicate that there exist differences in the ability to generate random time series between schizophrenic subjects and controls, as estimated by the CTM, ApEn, and LZ. This finding agrees with most previous results showing that schizophrenic patients are characterized by less complex neurobehavioral and neuropsychologic measurements.


Annals of Biomedical Engineering | 2011

Quantitative Evaluation of Artifact Removal in Real Magnetoencephalogram Signals with Blind Source Separation

Javier Escudero; Roberto Hornero; Daniel Abásolo; Alberto Fernández

The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity.


IEEE Transactions on Biomedical Engineering | 2007

Artifact Removal in Magnetoencephalogram Background Activity With Independent Component Analysis

Javier Escudero; Roberto Hornero; Daniel Abásolo; Alberto Fernández; Miguel López-Coronado

The aim of this study was to assess whether independent component analysis (ICA) could be valuable to remove power line noise, cardiac, and ocular artifacts from magnetoencephalogram (MEG) background activity. The MEGs were recorded from 11 subjects with a 148-channel whole-head magnetometer. We used a statistical criterion to estimate the number of independent components. Then, a robust ICA algorithm decomposed the MEG epochs and several methods were applied to detect those artifacts. The whole process had been previously tested on synthetic data. We found that the line noise components could be easily detected by their frequency spectrum. In addition, the ocular artifacts could be identified by their frequency characteristics and scalp topography. Moreover, the cardiac artifact was better recognized by its skewness value than by its kurtosis one. Finally, the MEG signals were compared before and after artifact rejection to evaluate our method.


Computer Methods and Programs in Biomedicine | 2010

Optimal parameters study for sample entropy-based atrial fibrillation organization analysis

Raúl Alcaraz; Daniel Abásolo; Roberto Hornero; José Joaquín Rieta

Sample entropy (SampEn) is a nonlinear regularity index that requires the a priori selection of three parameters: the length of the sequences to be compared, m, the patterns similarity tolerance, r, and the number of samples under analysis, N. Appropriate values for m, r and N have been recommended and widely used in the literature for the application of SampEn to some physiological time series, such as heart rate, hormonal data, etc. However, no guidelines exist for the selection of that values in other cases. Therefore, an optimal parameters study should be required for the application of SampEn to not previously analyzed biomedical signals. In the present work, a thorough analysis on the optimal values for m, r and N is presented within the context of atrial fibrillation (AF) organization estimation, computed from surface electrocardiogram recordings. Recently, the evaluation of AF organization through SampEn, has revealed clinically useful information that could be used for a better treatment of this arrhythmia. The present study analyzed optimal SampEn parameter values within two different scenarios of AF organization estimation, such as the prediction of paroxysmal AF termination and the electrical cardioversion outcome in persistent AF. As a result, interesting recommendations about the selection of m, r and N, together with the relationship between N and the sampling rate (f(s)) were obtained. More precisely, (i) the proportion between N and f(s) should be higher than 1s and f(s)>or=256 Hz, (ii) overlapping between adjacent N-length windows does not improve AF organization estimation with respect to the analysis of non-overlapping windows, and (iii) values of m and r maximizing successful classification for the analyzed AF databases should be considered within a range wider than the proposed in the literature for heart rate analysis, i.e. m=1 and m=2 and r between 0.1 and 0.25 times the standard deviation of the data.

Collaboration


Dive into the Daniel Abásolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Fernández

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Gómez

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar

Jesús Poza

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar

Pedro Espino

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Joaquín Rieta

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

María García

University of Valladolid

View shared research outputs
Researchain Logo
Decentralizing Knowledge