Daniel Aguirre de Cárcer
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Aguirre de Cárcer.
Applied and Environmental Microbiology | 2005
Marta Villacieros; Clare Whelan; Martina Mackova; Jesper Molgaard; María Sánchez-Contreras; Javier Lloret; Daniel Aguirre de Cárcer; Roke I. Oruezabal; Luis Bolaños; Thomas Macek; Ulrich Karlson; David N. Dowling; Marta Martín; Rafael Rivilla
ABSTRACT Rhizoremediation of organic chemicals requires high-level expression of biodegradation genes in bacterial strains that are excellent rhizosphere colonizers. Pseudomonas fluorescens F113 is a biocontrol strain that was shown to be an excellent colonizer of numerous plant rhizospheres, including alfalfa. Although a derivative of F113 expressing polychlorinated biphenyl (PCB) biodegradation genes (F113pcb) has been reported previously, this strain shows a low level of bph gene expression, limiting its rhizoremediation potential. Here, a high-level expression system was designed from rhizobial nod gene regulatory relays. Nod promoters were tested in strain F113 by using β-galactosidase transcriptional fusions. This analysis showed that nodbox 4 from Sinorhizobium meliloti has a high level of expression in F113 that is dependent on an intact nodD1 gene. A transcriptional fusion of a nodbox cassette containing the nodD1 gene and nodbox 4 fused to a gfp gene was expressed in the alfalfa rhizosphere. The bph operon from Burkholderia sp. strain LB400 was cloned under the control of the nodbox cassette and was inserted as a single copy into the genome of F113, generating strain F113L::1180. This new genetically modified strain has a high level of BphC activity and grows on biphenyl as a sole carbon and energy source at a growth rate that is more than three times higher than that of F113pcb. Degradation of PCBs 3, 4, 5, 17, and 25 was also much faster in F113L::1180 than in F113pcb. Finally, the modified strain cometabolized PCB congeners present in Delor103 better than strain LB400, the donor of the bph genes used.
Arthritis & Rheumatism | 2014
Linda Rehaume; Stanislas Mondot; Daniel Aguirre de Cárcer; Jared Velasco; Helen Benham; Sumaira Z. Hasnain; Jaclyn Bowman; Merja Ruutu; Philip M. Hansbro; Michael A. McGuckin; Mark Morrison; Ranjeny Thomas
The spondyloarthritides share genetic susceptibility, interleukin‐23 (IL‐23) dependence, and the involvement of microbiota. The aim of the current study was to elucidate how host genetics influence gut microbiota and the relationship between microbiota and organ inflammation in spondyloarthritides.
The ISME Journal | 2007
Daniel Aguirre de Cárcer; Marta Martín; Martina Mackova; Thomas Macek; Ulrich Karlson; Rafael Rivilla
A 168-day microcosms experiment was used to assess the possible functional and structural shifts occurring in the bacterial community of a site with a historical record of polychlorinated biphenyl (PCB) contamination, after the introduction of plants whose roots have been inoculated with genetically modified (GM) microorganisms, designed for rhizoremediation. Salix sp. plants were inoculated with two different GM Pseudomonas fluorescens strains or with their parental wild-type strain. Both bulk soil and rhizosphere samples were analyzed. Physiological profiles based on 31 ecologically relevant carbon sources were used to detect differences in bacterial community functions. The community structure of eubacteria, α and β-proteobacteria, actinobacteria and acidobacteria communities were analyzed via a polymerase chain reaction–thermal gradient gel electrophoresis (TGGE) approach. The introduced transgenes had no effect on the function and structure of the bacterial community in bulk soil, although they enhanced biodegradation of PCBs as determined by chemical analysis. However, the transgenes effected the development of functionally and genetically distinct bacterial communities in the rhizosphere. Moreover, structural and functional differences were detected between planted and unplanted soils and between soil and rhizosphere samples. In the case of the different group-specific structures studied, differences were observed between groups because of time-dependant shifts, rhizosphere effect and bacterial strain introduced.
Environmental Microbiology | 2010
Emma Barahona; Ana Navazo; Fátima Yousef-Coronado; Daniel Aguirre de Cárcer; Francisco Martínez-Granero; Manuel Espinosa-Urgel; Marta Martín; Rafael Rivilla
Motility is a key trait for rhizosphere colonization by Pseudomonas fluorescens. Mutants with reduced motility are poor competitors, and hypermotile, more competitive phenotypic variants are selected in the rhizosphere. Flagellar motility is a feature associated to planktonic, free-living single cells, and although it is necessary for the initial steps of biofilm formation, bacteria in biofilm lack flagella. To test the correlation between biofilm formation and rhizosphere colonization, we have used P. fluorescens F113 hypermotile derivatives and mutants affected in regulatory genes which in other bacteria modulate biofilm development, namely gacS (G), sadB (S) and wspR (W). Mutants affected in these three genes and a hypermotile variant (V35) isolated from the rhizosphere were impaired in biofilm formation on abiotic surfaces, but colonized the alfalfa root apex as efficiently as the wild-type strain, indicating that biofilm formation on abiotic surfaces and rhizosphere colonization follow different regulatory pathways in P. fluorescens. Furthermore, a triple mutant gacSsadBwspR (GSW) and V35 were more competitive than the wild-type strain for root-tip colonization, suggesting that motility is more relevant in this environment than the ability to form biofilms on abiotic surfaces. Microscopy showed the same root colonization pattern for P. fluorescens F113 and all the derivatives: extensive microcolonies, apparently held to the rhizoplane by a mucigel that seems to be plant produced. Therefore, the ability to form biofilms on abiotic surfaces does not necessarily correlates with efficient rhizosphere colonization or competitive colonization.
Applied and Environmental Microbiology | 2007
Daniel Aguirre de Cárcer; Marta Martín; Ulrich Karlson; Rafael Rivilla
ABSTRACT The aim of this study was to analyze the structural and functional changes occurring in a polychlorinated-biphenyl (PCB)-contaminated soil ecosystem after the introduction of a suitable host plant for rhizoremediation (Salix viminalis). We have studied the populations and phylogenetic distribution of key bacterial groups (Alpha- and Betaproteobacteria, Acidobacteria, and Actinobacteria) and the genes encoding iron-sulfur protein α (ISPα) subunits of the toluene/biphenyl dioxygenases in soil and rhizosphere by screening gene libraries using temperature gradient gel electrophoresis. The results, based on the analysis of 415 clones grouped into 133 operational taxonomic units that were sequence analyzed (>128 kbp), show that the rhizospheric bacterial community which evolved from the native soil community during the development of the root system was distinct from the soil community for all groups studied except for the Actinobacteria. Proteobacteria were enriched in the rhizosphere and dominated both in rhizosphere and soil. There was a higher than expected abundance of Betaproteobacteria in the native and in the planted PCB-polluted soil. The ISPα sequences retrieved indicate a high degree of catabolic and phylogenetic diversity. Many sequences clustered with biphenyl dioxygenase sequences from gram-negative bacteria. A distinct cluster that was composed of sequences from this study, some previously described environmental sequences, and a putative ISPα from Sphingomonas wittichii RW1 seems to contain greater diversity than the presently recognized toluene/biphenyl dioxygenase subfamily. Moreover, the rhizosphere selected for two ISPα sequences that accounted for almost 60% of the gene library and were very similar to sequences harbored by Pseudomonas species.
The ISME Journal | 2011
Daniel Aguirre de Cárcer; Páraic Ó Cuív; Tingtin Wang; Seungha Kang; Daniel L. Worthley; Vicki Whitehall; Iain J. Gordon; Christopher S. McSweeney; Barbara A. Leggett; Mark Morrison
We applied constrained ordination numerical ecology methods to data produced with a human intestinal tract-specific phylogenetic microarray (the Aus-HIT Chip) to examine the microbial diversity associated with matched biopsy tissue samples taken from the caecum, transverse colon, sigmoid colon and rectum of 10 healthy patients. Consistent with previous studies, the profiles revealed a marked intersubject variability; however, the numerical ecology methods of analysis allowed the subtraction of the subject effect from the data and revealed, for the first time, evidence of a longitudinal gradient for specific microbes along the colorectum. In particular, probes targeting Streptococcus and Enterococcus spp. produced strongest signals with caecal and transverse colon samples, with a gradual decline through to the rectum. Conversely, the analyses suggest that several members of the Enterobacteriaceae increase in relative abundance towards the rectum. These collective differences were substantiated by the multivariate analysis of quantitative PCR data. We were also able to identify differences in the microarray profiles, especially for the streptococci and Faecalibacterium prausnitzii, on the basis of gender. The results derived by these multivariate analyses are biologically intuitive and suggest that the biogeography of the colonic mucosa can be monitored for changes through cross-sectional and/or inception cohort studies.
Microbial Ecology | 2011
Páraic Ó Cuív; Daniel Aguirre de Cárcer; Michelle Jones; Eline S. Klaassens; Daniel L. Worthley; Vicki Whitehall; Seungha Kang; Christopher S. McSweeney; Barbara A. Leggett; Mark Morrison
Potentially valuable sources of DNA have been extracted from human colonic tissues and are retained in biobanks throughout the world, and might be re-examined to better understand host–microbe interactions in health and disease. However, the published protocols for DNA extraction typically used by gastroenterologists have not been systematically compared in terms of their recovery of the microbial fraction associated with colonic tissue. For this reason, we examined how three different tissue DNA extraction methods (the QIAGEN AllPrep DNA/RNA kit, salting out and high molecular weight (HMW) methods of DNA extraction) employed in past clinical trials, and the repeated bead beating and column (RBB+C) method might impact the recovery of microbial DNA from colonic tissue, using a custom designed phylogenetic microarray for gut bacteria and archaea. All four methods produced very similar profiles of the microbial diversity, but there were some differences in probe signal intensities, with the HMW method producing stronger probe intensities for a subset of the Firmicutes probes including Clostridium and Streptococcus spp. Real-time PCR analysis revealed that the HMW and RBB+C extracted DNA contained significantly more DNA of Firmicutes origin and that the different DNA extraction methods also gave variable results in terms of host DNA recovery. All of the methods tested recovered DNA from the archaeal community although there were some differences in probe signal intensity. Based on these findings, we conclude that while all four methods are efficacious at releasing microbial DNA from biopsy tissue samples, the HMW and RBB+C methods of DNA extraction may release more DNA from some of the Firmicutes bacteria associated with colonic tissue. Thus, DNA archived in biobanks could be suitable for retrospective profiling analyses, provided the caveats with respect to the DNA extraction method(s) used are taken into account.
Science Advances | 2015
Daniel Aguirre de Cárcer; Alberto López-Bueno; David A. Pearce; Antonio Alcami
A metagenomics analysis of Arctic freshwater viral DNA communities uncovers unique genetics and bipolar lineages. Viruses constitute the most abundant biological entities and a large reservoir of genetic diversity on Earth. Despite the recent surge in their study, our knowledge on their actual biodiversity and distribution remains sparse. We report the first metagenomic analysis of Arctic freshwater viral DNA communities and a comparative analysis with other freshwater environments. Arctic viromes are dominated by unknown and single-stranded DNA viruses with no close relatives in the database. These unique viral DNA communities mostly relate to each other and present some minor genetic overlap with other environments studied, including an Arctic Ocean virome. Despite common environmental conditions in polar ecosystems, the Arctic and Antarctic DNA viromes differ at the fine-grain genetic level while sharing a similar taxonomic composition. The study uncovers some viral lineages with a bipolar distribution, suggesting a global dispersal capacity for viruses, and seemingly indicates that viruses do not follow the latitudinal diversity gradient known for macroorganisms. Our study sheds light into the global biogeography and connectivity of viral communities.
Applied Microbiology and Biotechnology | 2011
Daniel Aguirre de Cárcer; Phuc Thi Ha; Jae Kyung Jang; In Seop Chang
We report the electrochemical characterization and microbial community analysis of closed circuit microbial fuel cells (CC-MFCs) and open circuit (OC) cells continuously fed with propionate as substrate. Differences in power output between MFCs correlated with their polarization behavior, which is related to the maturation of the anodophilic communities. The microbial communities residing in the biofilm growing on the electrode, biofouled cation-exchange membrane and anodic chamber liquor of OC-and CC-MFCs were characterized by restriction fragment length polymorphism screening of 16S rRNA gene clone libraries. The results show that the CC-MFC anode was enriched in several microorganisms related to known electrochemically active and dissimilatory Fe(III) reducing bacteria, mostly from the Geobacter spp., to the detriment of Bacteroidetes abundant in the OC-MFC anode. The results also evidenced the lack of a specific pelagic community in the liquor sample. The biofilm growing on the cation-exchange membrane of the CC-MFC was found to be composed of a low-diversity community dominated by two microaerophilic species of the Achromobacter and Azovibrio genus.
Applied and Environmental Microbiology | 2011
Daniel Aguirre de Cárcer; Stuart E. Denman; Christopher S. McSweeney; Mark Morrison
ABSTRACT The use and validation of a strategy that allows a universal set of bar-coded sequencing primers to be appended to an amplified PCR product is described. The strategy allows a modular approach, in that the same bar code can be used with two or more target-specific primer sets, even simultaneously.
Collaboration
Dive into the Daniel Aguirre de Cárcer's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs