Daniel Alonso-Alconada
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Alonso-Alconada.
Archives of Disease in Childhood | 2015
K Jane Hassell; Mojgan Ezzati; Daniel Alonso-Alconada; Derek J. Hausenloy; Nicola J. Robertson
Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE). The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised. Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear. It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy. There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE. In this review, we focus on strategies that can augment the bodys own endogenous neuroprotection. We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult. Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential. Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.
Stroke | 2015
Daniel Alonso-Alconada; K Broad; A Bainbridge; M Chandrasekaran; S Faulkner; Aron Kerenyi; Jane Hassell; Eridan Rocha-Ferreira; Mariya Hristova; Bobbi Fleiss; Kate Bennett; Dorottya Kelen; E Cady; Pierre Gressens; X Golay; Nicola J. Robertson
Background and Purpose— In infants with moderate to severe neonatal encephalopathy, whole-body cooling at 33°C to 34°C for 72 hours is standard care with a number needed to treat to prevent a adverse outcome of 6 to 7. The precise brain temperature providing optimal neuroprotection is unknown. Methods— After a quantified global cerebral hypoxic-ischemic insult, 28 piglets aged <24 hours were randomized (each group, n=7) to (1) normothermia (38.5°C throughout) or whole-body cooling 2 to 26 hours after insult to (2) 35°C, (3) 33.5°C, or (4) 30°C. At 48 hours after hypoxia-ischemia, delayed cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and cleaved caspase 3) and microglial ramification (ionized calcium-binding adapter molecule 1) were evaluated. Results— At 48 hours after hypoxia-ischemia, substantial cerebral injury was found in the normothermia and 30°C hypothermia groups. However, with 35°C and 33.5°C cooling, a clear reduction in delayed cell death and microglial activation was observed in most brain regions (P<0.05), with no differences between 35°C and 33.5°C cooling groups. A protective pattern was observed, with U-shaped temperature dependence in delayed cell death in periventricular white matter, caudate nucleus, putamen, hippocampus, and thalamus. A microglial activation pattern was also seen, with inverted U-shaped temperature dependence in periventricular white matter, caudate nucleus, internal capsule, and hippocampus (all P<0.05). Conclusions— Cooling to 35°C (an absolute drop of 3.5°C as in therapeutic hypothermia protocols) or to 33.5°C provided protection in most brain regions after a cerebral hypoxic-ischemic insult in the newborn piglet. Although the relatively wide therapeutic range of a 3.5°C to 5°C drop in temperature reassured, overcooling (an 8.5°C drop) was clearly detrimental in some brain regions.
International Journal of Molecular Sciences | 2013
Daniel Alonso-Alconada; Antonia Alvarez; Olatz Arteaga; Agustin Martinez-Ibargüen; Enrique Hilario
One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.
Brain Research | 2010
Daniel Alonso-Alconada; Francisco J. Alvarez; Antonia Alvarez; Victoria Mielgo; Felipe Goñi-de-Cerio; Maria C. Rey-Santano; Amale Caballero; José Martínez-Orgado; Enrique Hilario
The aim of the present work was to evaluate in an early time point the effect of the cannabinoid agonist WIN 55,212-2 after hypoxic-ischemic (HI) brain injury induced by partial occlusion of the umbilical cord of premature fetal lambs. Lambs were assigned to three experimental groups: one SHAM group: non-injured animals, and two hypoxic-ischemic groups that received a dose of 0.01μg/kg WIN 55,212-2 (HI+WIN group) or not (HI+VEH) after 60min of a hypoxic-ischemic event. All animals were managed on mechanical ventilation for 3h and then sacrificed. Brains were perfusion-fixed and different regions separated for regional cerebral blood flow measurement, apoptosis quantification by TUNEL method and S-100 protein analysis by flow cytometry. The number of apoptotic cells was lower in the HI+WIN group in all regions studied. Moreover, animals treated with the cannabinoid agonist showed higher values in the percentage of S-100 positive cells in all regions, except in the cortex. In both studies we obtained similar values between SHAM group and HI+WIN group. Our results suggest that the administration of the cannabinoid agonist WIN 55,212-2 after hypoxic-ischemic brain injury in preterm lambs decreases brain injury reducing the delayed cell death and glial damage.
Neurobiology of Disease | 2016
K Broad; Igor Fierens; Bobbi Fleiss; Eridan Rocha-Ferreira; Mojgan Ezzati; Jane Hassell; Daniel Alonso-Alconada; A Bainbridge; Go Kawano; Daqing Ma; Ilias Tachtsidis; Pierre Gressens; Xavier Golay; Robert D. Sanders; Nicola J. Robertson
Cooling to 33.5 °C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia–ischemia we assessed whether inhaled 45–50% Argon from 2–26 h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia–ischemia, 20 Newborn male Large White piglets < 40 h were randomized to: (i) Cooling (33 °C) from 2–26 h (n = 10); or (ii) Cooling and inhaled 45–50% Argon (Cooling + Argon) from 2–26 h (n = 8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48 h after hypoxia–ischemia. EEG was monitored. At 48 h after hypoxia–ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia–ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling + Argon group were excluded. Comparing Cooling + Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48 h after hypoxia–ischemia (p < 0.001 for both) and lower 1H MRS lactate/N acetyl aspartate in white (p = 0.03 and 0.04) but not gray matter at 24 and 48 h. EEG background recovery was faster (p < 0.01) with Cooling + Argon. An overall difference between average cell-death of Cooling versus Cooling + Argon was observed (p < 0.01); estimated cells per mm2 were 23.9 points lower (95% C.I. 7.3–40.5) for the Cooling + Argon versus Cooling. Inhaled 45–50% Argon from 2–26 h augmented hypothermic protection at 48 h after hypoxia–ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy.
Reproductive Sciences | 2012
Daniel Alonso-Alconada; Enrique Hilario; Francisco J. Alvarez; Antonia Alvarez
Despite advances in neonatology, the hypoxic–ischemic injury in the perinatal period remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Using a sheep model of intrauterine asphyxia, we evaluated the correlation between reactive oxygen species (ROS) overproduction, cytokine expression, and apoptotic cell death. Fetal lambs were assigned to sham group, nonasphyctic animals; and hypoxia–ischemia (HI) group, lambs subjected to 60 minutes of HI) by partial cord occlusion and sacrificed 3 hours later. Different brain regions were separated to quantify the number of apoptotic cells and the same territories were dissociated for flow cytometry studies. Our results suggest that the overproduction of ROS and the early increase in cytokine production after HI in fetal lambs correlate in a significant manner with the apoptotic index, as well as with each brain region evaluated.
Neuroscience Bulletin | 2011
Daniel Alonso-Alconada; Antonia Alvarez; Enrique Hilario
Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.摘要围产期缺血缺氧一直是引起新生儿脑损伤的首要因素, 往往导致死亡或终生后遗症。 由于新生儿缺血缺氧性脑损伤的病理复杂性, 目前还没有针对此病的特定疗法。 因此, 寻找新的神经保护性疗法正日益引起研究者的关注。 在哺乳动物体内, 大麻素系统能调节大范围的生理过程, 而且在不同类型的急性脑损伤中也具有神经保护作用。 近几年的研究表明, 内源性大麻素系统在围产期窒息中也扮演着神经保护者的角色。 本文主要就大麻素作为一种新的治疗策略在围产期缺血缺氧性脑损伤中的神经保护作用做一综述。
Journal of Cerebral Blood Flow and Metabolism | 2016
Mojgan Ezzati; A Bainbridge; K Broad; Go Kawano; Aaron Oliver-Taylor; Eridan Rocha-Ferreira; Daniel Alonso-Alconada; Igor Fierens; Jamshid Rostami; K Jane Hassell; Ilias Tachtsidis; Pierre Gressens; Mariya Hristova; Kate Bennett; Sophie Lebon; Bobbi Fleiss; Derek M. Yellon; Derek J. Hausenloy; Xavier Golay; Nicola J. Robertson
Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC – with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter.
Pediatric Research | 2012
Silvia Carloni; Daniel Alonso-Alconada; Silvia Girelli; Andrea Duranti; Andrea Tontini; Daniele Piomelli; Enrique Hilario; Antonia Alvarez; Walter Balduini
Background:The endocannabinoids are emerging as natural brain protective substances that exert potentially beneficial effects in several neurological disorders by virtue of their hypothermic, immunomodulatory, vascular, antioxidant, and antiapoptotic actions. This study was undertaken to assess whether preventing the deactivation of the endocannabinoid 2-arachidonoylglycerol (2-AG) with the monoacylglycerol lipase (MAGL) inhibitor URB602 can provide neuroprotective effects in hypoxia–ischemia (HI)-induced brain injury.Methods:URB602 was administered into the right lateral ventricle 30 min before 7-day-old pup rats were subjected to HI. The neuroprotective effect was evaluated on postnatal day (PN) 14 or at adulthood (PN80) using behavioral and histological analyses. Activated caspase-3 expression and propidium iodide labeling were assessed as indexes of apoptotic and necrotic cell death, respectively.Results:Pretreatment with URB602 reduced apoptotic and necrotic cell death, as well as the infarct volume measured at PN14. At adulthood, URB602-treated HI animals performed better at the T-maze and the Morris maze, and also showed a significant reduction of brain damage.Conclusion:These results demonstrate that a pretreatment with URB602 significantly reduces brain damage and improves functional outcome, indicating that endocannabinoid-degrading enzymes may represent an important target for neuroprotection in neonatal ischemic brain injury.
Journal of Neuroscience Research | 2012
Felipe Goñi-de-Cerio; Antonia Alvarez; Idoia Lara-Celador; Francisco J. Alvarez; Daniel Alonso-Alconada; Enrique Hilario
The aim of this work was to analyze the effect of MgSO4 treatment in the brain after hypoxic–ischemic (HI) injury in premature fetal lambs. Injury was induced by partial occlusion of umbilical cord for 60 min, and then the preterm lambs (80–90% of gestation) were randomly assigned to one of the following groups: control group, in which the animals were managed by conventional mechanical ventilation for 3 hr; 3 hr postpartial cord occlusion (3‐hr‐PCO) group, in which injured animals were managed by ventilation and then sacrificed 3 hr after HI; and MgSO4 group, in which animals received 400 mg/kg MgSO4 for 20 min soon after HI was induced and were managed by ventilation for 3 hr. Brains were analyzed for apoptosis by TUNEL assay. Cell viability and intracellular state studies were assessed by flow cytometry. The delayed death index was significantly increased in the 3‐hr‐PCO group in comparison with control. Administration of MgSO4 elicited a delay in cell death that was similar to that in the control group. The 3‐hr‐PCO group showed a significantly higher concentration of reactive oxygen species, mitochondrial damage, and intracellular calcium in comparison with control and MgSO4‐ treated groups. Our results suggest that MgSO4 treatment might have potential therapeutic benefits after the HI event.