Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Andrade Da Cunha is active.

Publication


Featured researches published by Daniel Andrade Da Cunha.


Journal of Cell Science | 2008

Initiation and execution of lipotoxic ER stress in pancreatic beta-cells.

Daniel Andrade Da Cunha; Paul Hekerman; Laurence Ladrière; Angie Bazarra-Castro; Fernanda Ortis; Marion C. Wakeham; Fabrice Moore; Joanne Rasschaert; Alessandra K Cardozo; Elisa A. Bellomo; Lutgart Overbergh; Chantal Mathieu; R Lupi; Tsonwin Hai; André Herchuelz; Piero Marchetti; Guy A. Rutter; Decio L. Eizirik; Miriam Cnop

Free fatty acids (FFA) cause apoptosis of pancreatic β-cells and might contribute to β-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary β-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling. Palmitate induced more apoptosis and markedly activated the IRE1, PERK and ATF6 pathways, owing to a sustained depletion of ER Ca2+ stores, whereas the unsaturated FFA oleate led to milder PERK and IRE1 activation and comparable ATF6 signaling. Non-metabolizable methyl-FFA analogs induced neither ER stress nor β-cell apoptosis. The FFA-induced ER stress response was not modified by high glucose concentrations, suggesting that ER stress in primary β-cells is primarily lipotoxic, and not glucolipotoxic. Palmitate, but not oleate, activated JNK. JNK inhibitors reduced palmitate-mediated AP-1 activation and apoptosis. Blocking the transcription factor CHOP delayed palmitate-induced β-cell apoptosis. In conclusion, saturated FFA induce ER stress via ER Ca2+ depletion. The IRE1 and resulting JNK activation contribute to β-cell apoptosis. PERK activation by palmitate also contributes to β-cell apoptosis via CHOP.


The EMBO Journal | 2012

DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients

Michael Volkmar; Sarah Dedeurwaerder; Daniel Andrade Da Cunha; Matladi N. Ndlovu; Matthieu Defrance; Rachel Deplus; Emilie Calonne; Ute Volkmar; Mariana Igoillo-Esteve; Najib Naamane; Silvia Del Guerra; Matilde Masini; Marco Bugliani; Piero Marchetti; Miriam Cnop; Decio L. Eizirik; François Fuks

In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non‐diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non‐diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in β‐cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.


Diabetes | 2009

Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB

Daniel Andrade Da Cunha; Laurence Ladrière; Fernanda Ortis; Mariana Igoillo-Esteve; Esteban Nicolas Gurzov; R Lupi; Piero Marchetti; Decio L. Eizirik; Miriam Cnop

OBJECTIVE Chronic exposure of pancreatic β-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to β-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of β-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS INS-1E or fluorescence-activated cell sorter–purified primary rat β-cells were exposed to oleate or palmitate with or without the GLP-1 agonist exendin-4 or forskolin. Cyclopiazonic acid was used as a synthetic ER stressor, while the activating transcription factor 4–C/EBP homologous protein branch was selectively activated with salubrinal. The ER stress signaling pathways modulated by GLP-1 agonists were studied by real-time PCR and Western blot. Knockdown by RNA interference was used to identify mediators of the antiapoptotic GLP-1 effects in the ER stress response and downstream mitochondrial cell death mechanisms. RESULTS Exendin-4 and forskolin protected β-cells against FFAs via the induction of the ER chaperone BiP and the antiapoptotic protein JunB that mediate β-cell survival under lipotoxic conditions. On the other hand, exendin-4 and forskolin protected against synthetic ER stressors by inactivating caspase 12 and upregulating Bcl-2 and X-chromosome–linked inhibitor of apoptosis protein that inhibit mitochondrial apoptosis. CONCLUSIONS These observations suggest that GLP-1 agonists increase in a context-dependent way the β-cell defense mechanisms against different pathways involved in ER stress–induced apoptosis. The identification of the pathways modulated by GLP-1 agonists allows for targeted approaches to alleviate β-cell ER stress in diabetes.


Cell Death & Differentiation | 2009

Signaling by IL-1beta+IFN-gamma and ER stress converge on DP5/Hrk activation: a novel mechanism for pancreatic beta-cell apoptosis.

Esteban Nicolas Gurzov; Fernanda Ortis; Daniel Andrade Da Cunha; Geoffrey Gosset; Manyu Li; Alessandra K Cardozo; Decio L. Eizirik

Chronic inflammation and pro-inflammatory cytokines are important mediators of pancreatic β-cell destruction in type 1 diabetes (T1D). We presently show that the cytokines IL-1β+IFN-γ and different ER stressors activate the Bcl-2 homology 3 (BH3)-only member death protein 5 (DP5)/harakiri (Hrk) resulting in β-cell apoptosis. Chemical ER stress-induced DP5 upregulation is JNK/c-Jun-dependent. DP5 activation by cytokines also involves JNK/c-Jun phosphorylation and is antagonized by JunB. Interestingly, cytokine-inducted DP5 expression precedes ER stress: mitochondrial release of cytochrome c and ER stress are actually a consequence of enhanced DP5 activation by cytokine-mediated nitric oxide formation. Our findings show that DP5 is central for β-cell apoptosis after different stimuli, and that it can act up- and downstream of ER stress. These observations contribute to solve two important questions, namely the mechanism by which IL-1β+IFN-γ induce β-cell death and the nature of the downstream signals by which ER stress ‘convinces’ β-cells to trigger apoptosis.


Diabetes | 2009

PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis

Fabrice Moore; Maikel L Colli; Miriam Cnop; Mariana Igoillo Esteve; Alessandra K Cardozo; Daniel Andrade Da Cunha; Marco Bugliani; Piero Marchetti; Decio L. Eizirik

OBJECTIVE The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in β-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal β-cells, besides evaluating its role in cytokine-induced signaling and β-cell apoptosis. RESEARCH DESIGN AND METHODS PTPN2 mRNA and protein expression was evaluated by real-time PCR and Western blot. Small interfering (si)RNAs were used to inhibit the expression of PTPN2 and downstream STAT1 in β-cells, allowing the assessment of cell death after cytokine treatment. RESULTS PTPN2 mRNA and protein are expressed in human islets and rat β-cells and upregulated by cytokines. Transfection with PTPN2 siRNAs inhibited basal- and cytokine-induced PTPN2 expression in rat β-cells and dispersed human islets cells. Decreased PTPN2 expression exacerbated interleukin (IL)-1β + interferon (IFN)-γ–induced β-cell apoptosis and turned IFN-γ alone into a proapoptotic signal. Inhibition of PTPN2 amplified IFN-γ–induced STAT1 phosphorylation, whereas double knockdown of both PTPN2 and STAT1 protected β-cells against cytokine-induced apoptosis, suggesting that STAT1 hyperactivation is responsible for the aggravation of cytokine-induced β-cell death in PTPN2-deficient cells. CONCLUSIONS We identified a functional role for the type 1 diabetes candidate gene PTPN2 in modulating IFN-γ signal transduction at the β-cell level. PTPN2 regulates cytokine-induced apoptosis and may thereby contribute to the pathogenesis of type 1 diabetes.


Journal of Biological Chemistry | 2010

p53 up-regulated modulator of apoptosis (PUMA) activation contributes to pancreatic beta-cell apoptosis induced by proinflammatory cytokines and endoplasmic reticulum stress.

Esteban Nicolas Gurzov; Carla M. Germano; Daniel Andrade Da Cunha; Fernanda Ortis; Jean-Marie Vanderwinden; Piero Marchetti; Lin Zhang; Decio L. Eizirik

Type 1 diabetes is an autoimmune disorder characterized by chronic inflammation and pancreatic β-cell loss. Here, we demonstrate that the proinflammatory cytokine interleukin-1β, combined with interferon-γ, induces the expression of the Bcl-2 homology 3 (BH3)-only activator PUMA (p53 up-regulated modulator of apoptosis) in β-cells. Transcriptional activation of PUMA is regulated by nuclear factor-κB and endoplasmic reticulum stress but is independent of p53. PUMA activation leads to mitochondrial Bax translocation, cytochrome c release, and caspase-3 cleavage resulting in β-cell demise. The antiapoptotic Bcl-XL protein is localized mainly at the mitochondria of the β-cells and antagonizes PUMA action, but Bcl-XL is inactivated by the BH3-only sensitizer DP5/Hrk in cytokine-exposed β-cells. Moreover, a pharmacological mimic of the BH3-only sensitizer Bad, which inhibits Bcl-XL and Bcl-2, induces PUMA-dependent β-cell death and potentiates cytokine-induced apoptosis. Our data support a hierarchical activation of BH3-only proteins controlling the intrinsic pathway of β-cell apoptosis in the context of inflammation and type 1 diabetes.


Diabetes | 2014

RNA-sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate

Miriam Cnop; Baroj Abdulkarim; Guy Bottu; Daniel Andrade Da Cunha; Mariana Igoillo-Esteve; Matilde Masini; Jean Valéry Turatsinze; Thasso Griebel; Olatz Villate; Izortze Santin; Marco Bugliani; Laurence Ladrière; Lorella Marselli; Mark I. McCarthy; Piero Marchetti; Michael Sammeth; Decio L. Eizirik

Pancreatic β-cell dysfunction and death are central in the pathogenesis of type 2 diabetes (T2D). Saturated fatty acids cause β-cell failure and contribute to diabetes development in genetically predisposed individuals. Here we used RNA sequencing to map transcripts expressed in five palmitate-treated human islet preparations, observing 1,325 modified genes. Palmitate induced fatty acid metabolism and endoplasmic reticulum (ER) stress. Functional studies identified novel mediators of adaptive ER stress signaling. Palmitate modified genes regulating ubiquitin and proteasome function, autophagy, and apoptosis. Inhibition of autophagic flux and lysosome function contributed to lipotoxicity. Palmitate inhibited transcription factors controlling β-cell phenotype, including PAX4 and GATA6. Fifty-nine T2D candidate genes were expressed in human islets, and 11 were modified by palmitate. Palmitate modified expression of 17 splicing factors and shifted alternative splicing of 3,525 transcripts. Ingenuity Pathway Analysis of modified transcripts and genes confirmed that top changed functions related to cell death. Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of transcription factor binding sites in palmitate-modified transcripts revealed a role for PAX4, GATA, and the ER stress response regulators XBP1 and ATF6. This human islet transcriptome study identified novel mechanisms of palmitate-induced β-cell dysfunction and death. The data point to cross talk between metabolic stress and candidate genes at the β-cell level.


Diabetes, Obesity and Metabolism | 2010

Causes and cures for endoplasmic reticulum stress in lipotoxic β-cell dysfunction.

Miriam Cnop; Laurence Ladrière; Mariana Igoillo-Esteve; Rodrigo F. Moura; Daniel Andrade Da Cunha

Pancreatic β‐cell dysfunction is central to the pathogenesis of type 2 diabetes, and the loss of functional β‐cell mass in type 2 diabetes is at least in part secondary to increased β‐cell apoptosis. Accumulating evidence suggests that endoplasmic reticulum (ER) stress is present in β‐cells in type 2 diabetes. Free fatty acids (FFAs) cause ER stress and are putative mediators of β‐cell dysfunction and death. In this review, we discuss the molecular mechanisms underlying ER stress induced by saturated and unsaturated FFAs. Oleate and palmitate trigger ER stress through ER Ca2+ depletion and build‐up of unfolded proteins in the secretory pathway. Saturated and unsaturated FFAs elicit a differential signal transduction in the three branches of the ER stress response, resulting in different survival/apoptosis outcomes. The protection of β‐cells against FFAs through the interference with ER stress signalling has opened novel therapeutic perspectives for type 2 diabetes. Chemical chaperones, salubrinal and glucagon‐like peptide‐1 (GLP‐1) analogues have been used to protect β‐cells from lipotoxic ER stress. Importantly, the pro‐ and antiapoptotic effects of these compounds are cell and context dependent.


Diabetes | 2010

Cytokines Interleukin-1β and Tumor Necrosis Factor-α Regulate Different Transcriptional and Alternative Splicing Networks in Primary β-Cells

Fernanda Ortis; Najib Naamane; Daisy Flamez; Laurence Ladrière; Fabrice Moore; Daniel Andrade Da Cunha; Maikel L Colli; Thomas Thykjaer; Kasper Thorsen; Torben F. Ørntoft; Decio L. Eizirik

OBJECTIVE Cytokines contribute to pancreatic β-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cytokines interleukin (IL)-1β + interferon (IFN)-γ and tumor necrosis factor (TNF)-α + IFN-γ in primary rat β-cells. RESEARCH DESIGN AND METHODS Fluorescence-activated cell sorter–purified rat β-cells were exposed to IL-1β + IFN-γ or TNF-α + IFN-γ for 6 or 24 h, and global gene expression was analyzed by microarray. Key results were confirmed by RT-PCR, and small-interfering RNAs were used to investigate the mechanistic role of novel and relevant transcription factors identified by pathway analysis. RESULTS Nearly 16,000 transcripts were detected as present in β-cells, with temporal differences in the number of genes modulated by IL-1β + IFNγ or TNF-α + IFN-γ. These cytokine combinations induced differential expression of inflammatory response genes, which is related to differential induction of IFN regulatory factor-7. Both treatments decreased the expression of genes involved in the maintenance of β-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-α, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine-induced changes in alternative splicing of >50% of the cytokine-modified genes. CONCLUSIONS The present study doubles the number of known genes expressed in primary β-cells, modified or not by cytokines, and indicates the biological role for several novel cytokine-modified pathways in β-cells. It also shows that cytokines modify alternative splicing in β-cells, opening a new avenue of research for the field.


Cell Death & Differentiation | 2011

Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to β-cell apoptosis.

Florent Allagnat; Daniel Andrade Da Cunha; Fabrice Moore; Jean-Marie Vanderwinden; Decio L. Eizirik; Alessandra K Cardozo

Pancreatic β-cell apoptosis is a key feature of diabetes mellitus and the mitochondrial pathway of apoptosis is a major mediator of β-cell death. We presently evaluated the role of the myeloid cell leukemia sequence 1 (Mcl-1), an antiapoptotic protein of the Bcl-2 family, in β-cells following exposure to well-defined β-cell death effectors, for example, pro-inflammatory cytokines, palmitate and chemical endoplasmic reticulum (ER) stressors. All cytotoxic stresses rapidly and preferentially decreased Mcl-1 protein expression as compared with the late effect observed on the other antiapoptotic proteins, Bcl-2 and Bcl-xL. This was due to ER stress-mediated inhibition of translation through eIF2α phosphorylation for palmitate and ER stressors and through the combined action of translation inhibition and JNK activation for cytokines. Knocking down Mcl-1 using small interference RNAs increased apoptosis and caspase-3 cleavage induced by cytokines, palmitate or thapsigargin, whereas Mcl-1 overexpression partly prevented Bax translocation to the mitochondria, cytochrome c release, caspase-3 cleavage and apoptosis induced by the β-cell death effectors. Altogether, our data suggest that Mcl-1 downregulation is a crucial event leading to β-cell apoptosis and provide new insights into the mechanisms linking ER stress and the mitochondrial intrinsic pathway of apoptosis. Mcl-1 is therefore an attractive target for the design of new strategies in the treatment of diabetes.

Collaboration


Dive into the Daniel Andrade Da Cunha's collaboration.

Top Co-Authors

Avatar

Decio L. Eizirik

Aarhus University Hospital

View shared research outputs
Top Co-Authors

Avatar

Miriam Cnop

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Piero Marchetti

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Laurence Ladrière

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariana Igoillo-Esteve

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Everardo M. Carneiro

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Lício A. Velloso

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge