Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Axehill is active.

Publication


Featured researches published by Daniel Axehill.


conference on decision and control | 2008

A dual gradient projection quadratic programming algorithm tailored for model predictive control

Daniel Axehill; Anders Hansson

The objective of this work is to derive a QP algorithm tailored for MPC. More specifically, the primary target application is MPC for discrete-time hybrid systems. A desired property of the algorithm is that warm starts should be possible to perform efficiently. This property is very important for on-line linear MPC, and it is crucial in branch and bound for hybrid MPC. In this paper, a dual active set-like QP method was chosen because of its warm start properties. A drawback with classical active set methods is that they often require many iterations in order to find the active set in optimum. Gradient projection methods are methods known to be able to identify this active set very fast and such a method was therefore chosen in this work. The gradient projection method was applied to the dual QP problem and it was tailored for the MPC application. Results from numerical experiments indicate that the performance of the new algorithm is very good, both for linear MPC as well as for hybrid MPC. It is also noticed that the number of QP iterations is significantly reduced compared to classical active set methods.


Automatica | 2010

Brief paper: Convex relaxations for mixed integer predictive control

Daniel Axehill; Lieven Vandenberghe; Anders Hansson

The main objective in this work is to compare different convex relaxations for Model Predictive Control (MPC) problems with mixed real valued and binary valued control signals. In the problem description considered, the objective function is quadratic, the dynamics are linear, and the inequality constraints on states and control signals are all linear. The relaxations are related theoretically and the quality of the bounds and the computational complexities are compared in numerical experiments. The investigated relaxations include the Quadratic Programming (QP) relaxation, the standard Semidefinite Programming (SDP) relaxation, and an equality constrained SDP relaxation. The equality constrained SDP relaxation appears to be new in the context of hybrid MPC and the result presented in this work indicates that it can be useful as an alternative relaxation, which is less computationally demanding than the ordinary SDP relaxation and which often gives a better bound than the bound from the QP relaxation. Furthermore, it is discussed how the result from the SDP relaxations can be used to generate suboptimal solutions to the control problem. Moreover, it is also shown that the equality constrained SDP relaxation is equivalent to a QP in an important special case.


Automatica | 2014

A parametric branch and bound approach to suboptimal explicit hybrid MPC

Daniel Axehill; Thomas Besselmann; Davide Martino Raimondo

In this article we present a parametric branch and bound algorithm for computation of optimal and suboptimal solutions to parametric mixed-integer quadratic programs and parametric mixed-integer linear programs. The algorithm returns an optimal or suboptimal parametric solution with the level of suboptimality requested by the user. An interesting application of the proposed parametric branch and bound procedure is suboptimal explicit MPC for hybrid systems, where the introduced user-defined suboptimality tolerance reduces the storage requirements and the online computational effort, or even enables the computation of a suboptimal MPC controller in cases where the computation of the optimal MPC controller would be intractable. Moreover, stability of the system in closed loop with the suboptimal controller can be guaranteed a priori.


conference on decision and control | 2006

A Mixed Integer Dual Quadratic Programming Algorithm Tailored for MPC

Daniel Axehill; Anders Hansson

The objective of this work is to derive an MIQP solver tailored for MPC. The MIQP solver is built on the branch and bound method, where QP relaxations of the original problem are solved in the nodes of a binary search tree. The difference between the subproblems is often small and therefore it is interesting to be able to use a previous solution as a starting point in a new subproblem. This is referred to as a warm start of the solver. Because of its good warm start properties, a dual active set QP method was chosen. The method is tailored for MPC by solving a part of the KKT system using a Riccati recursion, which makes the computational complexity of the QP iterations grow linearly with the prediction horizon. Simulation results are presented both for the QP solver itself and when it is incorporated as a part of the MIQP solver. In both cases the computational complexity is significantly reduced compared to if a primal active set solver not utilizing structure is used


conference on decision and control | 2007

Relaxations applicable to mixed integer predictive control comparisons and efficient computations

Daniel Axehill; Anders Hansson; Lieven Vandenberghe

In this work, different relaxations applicable to an MPC problem with a mix of real valued and binary valued control signals are compared. In the problem description considered, there are linear inequality constraints on states and control signals. The relaxations are related theoretically and both the tightness of the bounds and the computational complexities are compared in numerical experiments. The relaxations considered are the quadratic programming (QP) relaxation, the standard semidefinite programming (SDP) relaxation and an equality constrained SDP relaxation. The result is that the standard SDP relaxation is the one that usually gives the best bound and is most computationally demanding, while the QP relaxation is the one that gives the worst bound and is least computationally demanding. The equality constrained relaxation presented in this paper often gives a better bound than the QP relaxation and is less computationally demanding compared to the standard SDP relaxation. Furthermore, it is also shown how the equality constrained SDP relaxation can be efficiently computed by solving the Newton system in an Interior Point algorithm using a Riccati recursion. This makes it possible to compute the equality constrained relaxation with approximately linear computational complexity in the prediction horizon.


Systems & Control Letters | 2015

Controlling the level of sparsity in MPC

Daniel Axehill

In optimization algorithms used for on-line Model Predictive Control (MPC), linear systems of equations are often solved in each iteration. This is true both for Active Set methods as well as for Interior Point methods, and for linear MPC as well as for nonlinear MPC and hybrid MPC. The main computational effort is spent while solving these linear systems of equations, and hence, it is of greatest interest to solve them efficiently. Classically, the optimization problem has been formulated in either of two ways. One leading to a sparse linear system of equations involving relatively many variables to compute in each iteration and another one leading to a dense linear system of equations involving relatively few variables. In this work, it is shown that it is possible not only to consider these two distinct choices of formulations. Instead it is shown that it is possible to create an entire family of formulations with different levels of sparsity and number of variables, and that this extra degree of freedom can be exploited to obtain even better performance with the software and hardware at hand. This result also provides a better answer to a recurring question in MPC; should the sparse or dense formulation be used.


conference on decision and control | 2004

A preprocessing algorithm for MIQP solvers with applications to MPC

Daniel Axehill; Anders Hansson

In this paper a preprocessing algorithm for unconstrained mixed integer quadratic programming problems and binary quadratic programming problems is presented. The optimal value for some or all integer variables can be computed without approximations in polynomial time. The algorithm is first derived for the binary quadratic programming problem and the result is then extended to the mixed integer quadratic programming problem by transforming the latter problem into the first problem. Both mentioned quadratic programming problems have several important applications. In this paper, the focus is on model predictive control problems with both real-valued and binary control signals. As an illustration of the method, the algorithm is applied to two different problems of this type.


conference on decision and control | 2011

An optimization approach to resolve the competing aims of active fault detection and control

Jan Siroky; Miroslav Šimandl; Daniel Axehill; Ivo Puncochar

The paper deals with the problem of active fault detection and control for multiple models. It is assumed that a fault detector is given and the goal is to design an input signal generator such that detection and control aims are achieved. Since these two aim are conflicting, it is necessary to express a desired compromise between them. The paper investigates three formulations that allow for respecting both competing aims. In the first formulation both aims are combined into a single criterion. In other two formulations, one aim is reflected in the criterion and the other aim is enforced as a constraint.


conference on decision and control | 2010

On the choice of the linear decision functions for point location in polytopic data sets - Application to Explicit MPC

Alexander Fuchs; Daniel Axehill

This paper deals with efficient point location in large polytopic data sets, as required for the implementation of Explicit Model Predictive Control laws. The focus is on linear decision functions (LDF) which performs scalar product evaluations and an interval search to return the index set of candidate polytopes possibly containing the query point. We generalize a special LDF which uses the euclidean directions of the state space and the projection of the polytopes bounding boxes onto these directions to identify the candidate polytopes. Our generalized LDF may use any vector of the state space as direction and the projection of any points contained in the polytopes. We prove that there is a finite number of LDFs returning different index sets and show how to find the one returning the lowest worst-case number of candidate polytopes, a number that can be seen as a performance measure. Based on the results from an exhaustive study of low complexity problems, heuristics for the choice of the LDF are derived, involving the mean shift algorithm from pattern recognition. The result of extensive simulations on a larger problem attest the generalized LDF a 40 % gain in performance, mainly through adjusted directions, at a small additional storage cost.


IEEE Transactions on Signal Processing | 2008

A Low-Complexity High-Performance Preprocessing Algorithm for Multiuser Detection Using Gold Sequences

Daniel Axehill; Fredrik Gunnarsson; Anders Hansson

The optimum multiuser detection problem can be formulated as a maximum likelihood problem, which yields a binary quadratic programming problem to be solved. Generally this problem is NP-hard and is therefore hard to solve in real time. In this paper, a preprocessing algorithm is presented which makes it possible to detect some or all users optimally for a low computational cost if signature sequences with low cross correlation, e.g., Gold sequences, are used. The algorithm can be interpreted as, e.g., an adaptive tradeoff between parallel interference cancellation and successive interference cancellation. Simulations show that the preprocessing algorithm is able to optimally compute more than 94,% of the bits in the problem when the users are time-synchronous, even though the system is heavily loaded and affected by noise. Any remaining bits, not computed by the preprocessing algorithm, can either be computed by a suboptimal detector or an optimal detector. Simulations of the time-synchronous case show that if a suboptimal detector is chosen, the bit error rate (BER) rate is significantly reduced compared with using the suboptimal detector alone.

Collaboration


Dive into the Daniel Axehill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Ward

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Folkesson

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge