Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel B. Chonde is active.

Publication


Featured researches published by Daniel B. Chonde.


Brain | 2015

Evidence for brain glial activation in chronic pain patients

Marco L. Loggia; Daniel B. Chonde; Oluwaseun Akeju; Grae Arabasz; Ciprian Catana; Robert R. Edwards; Elena Hill; Shirley Hsu; David Izquierdo-Garcia; Ru-Rong Ji; Misha M. Riley; Ajay D. Wasan; Nicole R. Zürcher; Daniel S. Albrecht; Mark G. Vangel; Bruce R. Rosen; Vitaly Napadow; Jacob M. Hooker

Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.


The Journal of Nuclear Medicine | 2011

MRI-Assisted PET Motion Correction for Neurologic Studies in an Integrated MR-PET Scanner

Ciprian Catana; Thomas Benner; Andre van der Kouwe; Larry G. Byars; Michael Hamm; Daniel B. Chonde; Christian Michel; Georges El Fakhri; Matthias J. Schmand; A. Gregory Sorensen

Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. Methods: To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. Results: After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. Conclusion: An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.


NeuroImage: Clinical | 2015

Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [11C]-PBR28

Nicole R. Zürcher; Marco L. Loggia; Robert Lawson; Daniel B. Chonde; David Izquierdo-Garcia; Julia E. Yasek; Oluwaseun Akeju; Ciprian Catana; Bruce R. Rosen; Merit Cudkowicz; Jacob M. Hooker; Nazem Atassi

Evidence from human post mortem, in vivo and animal model studies implicates the neuroimmune system and activated microglia in the pathology of amyotrophic lateral sclerosis. The study aim was to further evaluate in vivo neuroinflammation in individuals with amyotrophic lateral sclerosis using [11C]-PBR28 positron emission tomography. Ten patients with amyotrophic lateral sclerosis (seven males, three females, 38–68 years) and ten age- and [11C]-PBR28 binding affinity-matched healthy volunteers (six males, four females, 33–65 years) completed a positron emission tomography scan. Standardized uptake values were calculated from 60 to 90 min post-injection and normalized to whole brain mean. Voxel-wise analysis showed increased binding in the motor cortices and corticospinal tracts in patients with amyotrophic lateral sclerosis compared to healthy controls (pFWE < 0.05). Region of interest analysis revealed increased [11C]-PBR28 binding in the precentral gyrus in patients (normalized standardized uptake value = 1.15) compared to controls (1.03, p < 0.05). In patients those values were positively correlated with upper motor neuron burden scores (r = 0.69, p < 0.05), and negatively correlated with the amyotrophic lateral sclerosis functional rating scale (r = –0.66, p < 0.05). Increased in vivo glial activation in motor cortices, that correlates with phenotype, complements previous histopathological reports. Further studies will determine the role of [11C]-PBR28 as a marker of treatments that target neuroinflammation.


The Journal of Nuclear Medicine | 2014

An SPM8-Based Approach for Attenuation Correction Combining Segmentation and Nonrigid Template Formation: Application to Simultaneous PET/MR Brain Imaging

David Izquierdo-Garcia; Adam E. Hansen; Stefan Förster; Didier Benoit; Sylvia Schachoff; Sebastian Fürst; Kevin T. Chen; Daniel B. Chonde; Ciprian Catana

We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Methods: Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest–based analyses were performed. Results: The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest–based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. Conclusion: We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks.


eLife | 2014

Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness

Oluwaseun Akeju; Marco L. Loggia; Ciprian Catana; Kara J. Pavone; Rafael Vazquez; James Rhee; Violeta Contreras Ramirez; Daniel B. Chonde; David Izquierdo-Garcia; Grae Arabasz; Shirley Hsu; Kathleen Habeeb; Jacob M. Hooker; Vitaly Napadow; Emery N. Brown; Patrick L. Purdon

Understanding the neural basis of consciousness is fundamental to neuroscience research. Disruptions in cortico-cortical connectivity have been suggested as a primary mechanism of unconsciousness. By using a novel combination of positron emission tomography and functional magnetic resonance imaging, we studied anesthesia-induced unconsciousness and recovery using the α2-agonist dexmedetomidine. During unconsciousness, cerebral metabolic rate of glucose and cerebral blood flow were preferentially decreased in the thalamus, the Default Mode Network (DMN), and the bilateral Frontoparietal Networks (FPNs). Cortico-cortical functional connectivity within the DMN and FPNs was preserved. However, DMN thalamo-cortical functional connectivity was disrupted. Recovery from this state was associated with sustained reduction in cerebral blood flow and restored DMN thalamo-cortical functional connectivity. We report that loss of thalamo-cortical functional connectivity is sufficient to produce unconsciousness. DOI: http://dx.doi.org/10.7554/eLife.04499.001


NeuroImage | 2014

Dynamic functional imaging of brain glucose utilization using fPET-FDG.

Marjorie Villien; Hsiao-Ying Wey; Joseph B. Mandeville; Ciprian Catana; Jonathan R. Polimeni; Christin Y. Sander; Nicole R. Zürcher; Daniel B. Chonde; Joanna S. Fowler; Bruce R. Rosen; Jacob M. Hooker

Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[(18)F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.


Molecular Pharmaceutics | 2013

Fibrin-targeted PET probes for the detection of thrombi.

Katie Ciesienski; Yan Yang; Ilknur Ay; Daniel B. Chonde; Galen S. Loving; Tyson A. Rietz; Ciprian Catana; Peter Caravan

There is an ongoing effort to develop better methods for noninvasive detection and characterization of thrombi. Here we describe the synthesis and evaluation of three new fibrin-targeted positron emission tomography (PET) probes (FBP1, FBP2, FBP3). Three fibrin-specific peptides were conjugated as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-monoamides at the C- and N-termini and chelated with (64)CuCl2. Probes were prepared with a specific activity ranging from 10 to 130 μCi/nmol. Both the peptides and the probes exhibited nanomolar dissociation constants (Kd) for the soluble fibrin fragment DD(E), although the Cu-DOTA derivatization resulted in a 2-3 fold loss in affinity relative to the parent peptide. Biodistribution and imaging studies were performed in a rat model of carotid artery thrombosis. For FBP1 and FBP2 at 120 min post injection, the vessel containing the thrombus showed the highest concentration of radioactivity after the excretory organs, that is, the liver and kidneys. This was confirmed ex vivo by autoradiography, which showed >4-fold activity in the thrombus-containing artery compared to the contralateral artery. FBP3 showed much lower thrombus uptake, and the difference was traced to greater metabolism of this probe. Hybrid MR-PET imaging with FBP1 or FBP2 confirmed that these probes were effective for the detection of an arterial thrombus in this rat model. A thrombus was visible on PET images as a region of high activity that corresponded to a region of arterial occlusion identified by simultaneous MR angiography. FBP1 and FBP2 represent promising new probes for the molecular imaging of thrombi.


NeuroImage | 2014

Simultaneous fMRI-PET of the opioidergic pain system in human brain.

Hsiao-Ying Wey; Ciprian Catana; Jacob M. Hooker; Darin D. Dougherty; Gitte M. Knudsen; Danny J.J. Wang; Daniel B. Chonde; Bruce R. Rosen; Randy L. Gollub; Jian Kong

MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically distinct components of the blood oxygenation level dependent (BOLD) fMRI signal has not yet been shown. We obtained sixteen fMRI-PET data sets from eight healthy volunteers. Each subject participated in randomized order in a pain scan and a control (nonpainful pressure) scan on the same day. Dynamic PET data were acquired with an opioid radioligand, [(11)C]diprenorphine, to detect endogenous opioid releases in response to pain. BOLD fMRI data were collected at the same time to capture hemodynamic responses. In this simultaneous human fMRI-PET imaging study, we show co-localized responses in thalamus and striatum related to pain processing, while modality specific brain networks were also found. Co-localized fMRI and PET signal changes in the thalamus were positively correlated suggesting that pain-induced changes in opioid neurotransmission contribute a significant component of the fMRI signal change in this region. Simultaneous fMRI-PET provides unique opportunities allowing us to relate specific neurochemical events to functional hemodynamic activation and to investigate the impacts of neurotransmission on neurovascular coupling of the human brain in vivo.


Neurology | 2016

Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis

Mohamad J. Alshikho; Nicole R. Zürcher; Marco L. Loggia; Paul Cernasov; Daniel B. Chonde; David Izquierdo Garcia; Julia E. Yasek; Oluwaseun Akeju; Ciprian Catana; Bruce R. Rosen; Merit Cudkowicz; Jacob M. Hooker; Nazem Atassi

Objective: In this cross-sectional study, we aimed to evaluate brain structural abnormalities in relation to glial activation in the same cohort of participants. Methods: Ten individuals with amyotrophic lateral sclerosis (ALS) and 10 matched healthy controls underwent brain imaging using integrated MR/PET and the radioligand [11C]-PBR28. Diagnosis history and clinical assessments including Upper Motor Neuron Burden Scale (UMNB) were obtained from patients with ALS. Diffusion tensor imaging (DTI) analyses including tract-based spatial statistics and tractography were applied. DTI metrics including fractional anisotropy (FA) and diffusivities (mean, axial, and radial) were measured in regions of interest. Cortical thickness was assessed using surface-based analysis. The locations of structural changes, measured by DTI and the areas of cortical thinning, were compared to regional glial activation measured by relative [11C]-PBR28 uptake. Results: In this cohort of individuals with ALS, reduced FA and cortical thinning colocalized with regions demonstrating higher radioligand binding. [11C]-PBR28 binding in the left motor cortex was correlated with FA (r = −0.68, p < 0.05) and cortical thickness (r = −0.75, p < 0.05). UMNB was correlated with glial activation (r = +0.75, p < 0.05), FA (r = −0.77, p < 0.05), and cortical thickness (r = −0.75, p < 0.05) in the motor cortex. Conclusions: Increased uptake of the glial marker [11C]-PBR28 colocalizes with changes in FA and cortical thinning. This suggests a link between disease mechanisms (gliosis and inflammation) and structural changes (cortical thinning and white and gray matter changes). In this multimodal neuroimaging work, we provide an in vivo model to investigate the pathogenesis of ALS.


Journal of the American Chemical Society | 2012

Discrete bimodal probes for thrombus imaging.

Ritika Uppal; Kate L. Ciesienski; Daniel B. Chonde; Galen S. Loving; Peter Caravan

Here we report a generalizable solid/solution-phase strategy for the synthesis of discrete bimodal fibrin-targeted imaging probes. A fibrin-specific peptide was conjugated with two distinct imaging reporters at the C- and N-termini. In vitro studies demonstrated retention of fibrin affinity and specificity. Imaging studies showed that these probes could detect fibrin over a wide range of probe concentrations by optical, magnetic resonance, and positron emission tomography imaging.

Collaboration


Dive into the Daniel B. Chonde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge