Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel B. Constam is active.

Publication


Featured researches published by Daniel B. Constam.


Nature | 2010

KAP1 controls endogenous retroviruses in embryonic stem cells.

Helen M. Rowe; Johan Jakobsson; Daniel Mesnard; Jacques Rougemont; Séverine Reynard; Tugce Aktas; Pierre V Maillard; Hillary Layard-Liesching; Sonia Verp; François Spitz; Daniel B. Constam; Didier Trono

More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5′ untranslated region (5′UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5′UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development.


Nature | 2012

Automated design of ligands to polypharmacological profiles

Jérémy Besnard; Gian Filippo Ruda; Vincent Setola; Keren Abecassis; Ramona M. Rodriguiz; Xi Ping Huang; Suzanne Norval; Maria F. Sassano; Antony I. Shin; Lauren A. Webster; Frederick R. C. Simeons; Laste Stojanovski; Annik Prat; Nabil G. Seidah; Daniel B. Constam; G. Richard Bickerton; Kevin D. Read; William C. Wetsel; Ian H. Gilbert; Bryan L. Roth; Andrew L. Hopkins

The clinical efficacy and safety of a drug is determined by its activity profile across many proteins in the proteome. However, designing drugs with a specific multi-target profile is both complex and difficult. Therefore methods to design drugs rationally a priori against profiles of several proteins would have immense value in drug discovery. Here we describe a new approach for the automated design of ligands against profiles of multiple drug targets. The method is demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain-penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein-coupled receptors. Overall, 800 ligand–target predictions of prospectively designed ligands were tested experimentally, of which 75% were confirmed to be correct. We also demonstrate target engagement in vivo. The approach can be a useful source of drug leads when multi-target profiles are required to achieve either selectivity over other drug targets or a desired polypharmacology.


Development | 2006

Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning

Daniel Mesnard; Marcela Guzman-Ayala; Daniel B. Constam

Anteroposterior (AP) polarity in the mammalian embryo is specified during gastrulation when naive progenitor cells in the primitive ectoderm are recruited into the primitive streak to form mesoderm and endoderm. At the opposite pole, this process is inhibited by signals previously induced in distal visceral endoderm (DVE). Both DVE and primitive streak formation, and hence positioning of the AP axis, rely on the TGFβ family member Nodal and its proprotein convertases Furin and Pace4. Here, we show that Nodal and Furin are initially co-expressed in the primitive endoderm together with a subset of DVE markers such as Lefty1 and Hex. However, with the appearance of extra-embryonic ectoderm (ExE), DVE formation is transiently inhibited. During this stage, Nodal activity is essential to specify embryonic VE and restrict the expression of Furin to the extra-embryonic region. Activation of Nodal is also necessary to maintain determinants of pluripotency such as Oct4, Nanog and Foxd3 during implantation, and to stimulate elongation of the egg cylinder, before inducing DVE and germ layer formation. We conclude that Nodal is already activated in primitive endoderm, but induces a functional DVE only after promoting the expansion of embryonic VE and pluripotent progenitor cells in the epiblast.


Nature Cell Biology | 2002

Extraembryonic proteases regulate Nodal signalling during gastrulation

Séverine Beck; J. Ann Le Good; Marcela Guzman; Nadav Ben Haim; Karine Roy; Friedrich Beermann; Daniel B. Constam

During gastrulation, a cascade of inductive tissue interactions converts pre-existing polarity in the mammalian embryo into antero-posterior pattern. This process is triggered by Nodal, a protein related to transforming growth factor-β (TFG-β) that is expressed in the epiblast and visceral endoderm, and its co-receptor Cripto, which is induced downstream of Nodal. Here we show that the proprotein convertases Spc1 and Spc4 (also known as Furin and Pace4, respectively) are expressed in adjacent extraembryonic ectoderm. They stimulate Nodal maturation after its secretion and are required in vivo for Nodal signalling. Embryo explants deprived of extraembryonic ectoderm phenocopy Spc1−/−; Spc4−/− double mutants in that endogenous Nodal fails to induce Cripto. But recombinant mature Nodal, unlike uncleaved precursor, can efficiently rescue Cripto expression. Cripto is also expressed in explants treated with bone morphogenetic protein 4 (BMP4). This indicates that Nodal may induce Cripto through both a signalling pathway in the embryo and induction of Bmp4 in the extraembryonic ectoderm. A lack of Spc1 and Spc4 affects both pathways because these proteases also stimulate induction of Bmp4.


Journal of Biological Chemistry | 1995

PUROMYCIN-SENSITIVE AMINOPEPTIDASE : SEQUENCE ANALYSIS, EXPRESSION, AND FUNCTIONAL CHARACTERIZATION

Daniel B. Constam; A Tobler; Anne Rensing-Ehl; Iris Kemler; Louis B. Hersh; Adriano Fontana

Among the molecular mechanisms that control the cell division cycle, proteolysis has emerged as a key regulatory process enabling cells to pass critical check points. Such proteolysis involves a cascade of enzymes including a multisubunit complex termed 26S proteasome. Here we report on the analysis of a novel mouse cDNA encoding the puromycin-sensitive aminopeptidase (PSA) and on its expression in COS cells and 3T3 fibroblasts. PSA is 27-40% homologous to several known Zn-binding aminopeptidases including aminopeptidase N. Immunohistochemical analysis revealed that PSA is localized to the cytoplasm and to the nucleus and associates with microtubules of the spindle apparatus during mitosis. Furthermore, puromycin and bestatin both arrested the cell cycle, leading to an accumulation of cells in G/M phase, and ultimately induced cells to undergo apoptosis at concentrations that inhibit PSA. Control experiments including cycloheximide further suggested that the induction of apoptosis by puromycin was not attributable to inhibition of protein synthesis. Taken together, these data favor the novel idea that PSA participates in proteolytic events essential for cell growth and viability.


International Archives of Allergy and Immunology | 1992

Modulation of the Immune Response by Transforming Growth Factor Beta

Adriano Fontana; Daniel B. Constam; Karl Frei; Ursula Malipiero; Hans-Walter Pfister

For the past several years immunologists have been fascinated by a series of experiments showing that transforming growth factor beta (TGF beta) suppresses T- and B-lymphocyte growth as well as IgM and IgG production by B cells. Moreover, while exerting chemotactic activity on monocytes and inducing expression of interleukin-1 and interleukin-6 by these cells, TGF beta interferes with bacterially induced tumor necrosis factor alpha production, oxygen radical formation and the adhesiveness of granulocytes to endothelial cells. These mechanisms may provide the basis for the effect of TGF beta to prevent the microvascular changes associated with brain edema formation in bacterial meningitis. Given the potential of lymphocytes as well as macrophages to produce TGF beta 1, this cytokine may exert negative feedback signals on the immune response, provided the cytokine is processed from its latent form to the bioactive homodimer. Potent effects of TGF beta have been observed in experimental animals including the inhibition of the generation of virus-specific cytotoxic T cells and antiviral antibodies as well as the diminution of cellular infiltrates with decreased major histocompatibility complex class-II expression and CD8+ T cells in the tissue of virally infected animals. TGF beta may also be of importance in tumor immunology. By the production of bioactive TGF beta as detected in glioblastoma and acute T-cell leukemia, tumor cells may induce an immunodeficiency state and escape immune surveillance. In inflammation, monitoring of TGF beta in the tissue will bring light on the immune regulation in acute and chronic inflammatory diseases.


Development | 2009

Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow

Charlotte Maisonneuve; Isabelle Guilleret; Philipp Vick; Thomas Weber; Philipp Andre; Tina Beyer; Martin Blum; Daniel B. Constam

Polycystic diseases and left-right (LR) axis malformations are frequently linked to cilia defects. Renal cysts also arise in mice and frogs lacking Bicaudal C (BicC), a conserved RNA-binding protein containing K-homology (KH) domains and a sterile alpha motif (SAM). However, a role for BicC in cilia function has not been demonstrated. Here, we report that targeted inactivation of BicC randomizes left-right (LR) asymmetry by disrupting the planar alignment of motile cilia required for cilia-driven fluid flow. Furthermore, depending on its SAM domain, BicC can uncouple Dvl2 signaling from the canonical Wnt pathway, which has been implicated in antagonizing planar cell polarity (PCP). The SAM domain concentrates BicC in cytoplasmic structures harboring RNA-processing bodies (P-bodies) and Dvl2. These results suggest a model whereby BicC links the orientation of cilia with PCP, possibly by regulating RNA silencing in P-bodies.


Genes & Development | 2008

VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5

Dorota Szumska; Guido Pieles; Rachid Essalmani; M Bilski; Daniel Mesnard; K Kaur; Angela Franklyn; K El Omari; J Jefferis; Jamie Bentham; J M Taylor; Jürgen E. Schneider; Sebastian J. Arnold; P Johnson; Z Tymowska-Lalanne; David K. Stammers; Kieran Clarke; Stefan Neubauer; A Morris; Steve D.M. Brown; C Shaw-Smith; Armando Cama; Valeria Capra; J Ragoussis; Daniel B. Constam; Nabil G. Seidah; Annik Prat; Shoumo Bhattacharya

We have identified an ethylnitrosourea (ENU)-induced recessive mouse mutation (Vcc) with a pleiotropic phenotype that includes cardiac, tracheoesophageal, anorectal, anteroposterior patterning defects, exomphalos, hindlimb hypoplasia, a presacral mass, renal and palatal agenesis, and pulmonary hypoplasia. It results from a C470R mutation in the proprotein convertase PCSK5 (PC5/6). Compound mutants (Pcsk5(Vcc/null)) completely recapitulate the Pcsk5(Vcc/Vcc) phenotype, as does an epiblast-specific conditional deletion of Pcsk5. The C470R mutation ablates a disulfide bond in the P domain, and blocks export from the endoplasmic reticulum and proprotein convertase activity. We show that GDF11 is cleaved and activated by PCSK5A, but not by PCSK5A-C470R, and that Gdf11-deficient embryos, in addition to having anteroposterior patterning defects and renal and palatal agenesis, also have a presacral mass, anorectal malformation, and exomphalos. Pcsk5 mutation results in abnormal expression of several paralogous Hox genes (Hoxa, Hoxc, and Hoxd), and of Mnx1 (Hlxb9). These include known Gdf11 targets, and are necessary for caudal embryo development. We identified nonsynonymous mutations in PCSK5 in patients with VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb malformation OMIM 192350) and caudal regression syndrome, the phenotypic features of which resemble the mouse mutation. We propose that Pcsk5, at least in part via GDF11, coordinately regulates caudal Hox paralogs, to control anteroposterior patterning, nephrogenesis, skeletal, and anorectal development.


Current Biology | 2005

Nodal stability determines signaling range

J. Ann Le Good; Katherine Joubin; Antonio J. Giraldez; Nadav Ben-Haim; Séverine Beck; Yu Chen; Alexander F. Schier; Daniel B. Constam

Secreted TGFbeta proteins of the Nodal family pattern the vertebrate body axes and induce mesoderm and endoderm . Nodal proteins can act as morphogens , but the mechanisms regulating their activity and signaling range are poorly understood. In particular, it has been unclear how inefficient processing or rapid turnover of the Nodal protein influences autocrine and paracrine signaling properties . Here, we evaluate the role of Nodal processing and stability in tissue culture and zebrafish embryos. Removal of the pro domain potentiates autocrine signaling but reduces Nodal stability and signaling range. Insertion of an N-glycosylation site present in several related TGFbeta proteins increases the stability of mature Nodal. The stabilized form of Nodal acts at a longer range than the wild-type form. These results suggest that increased proteolytic maturation of Nodal potentiates autocrine signaling, whereas increased Nodal stability extends paracrine signaling.


European Journal of Neuroscience | 1994

Transient production of TGF-beta 2 by postnatal cerebellar neurons and its effect on neuroblast proliferation

Daniel B. Constam; Peter Schmid; Adriano Aguzzi; Melitta Schachner; Adriano Fontana

The beta transforming growth factors (TGF‐β) are suggested to regulate developmental processes since they are distinctly expressed during embryogenesis and exert pleiotropic effects on cell growth and differentiation. In the present study the expression of TGF‐β isoforms was investigated in the postnatal and adult mouse brain. As shown by in situ hybridization, TGF‐β2 was expressed in the choroid plexus, hippocampus, dentate gyrus and cerebellar Purkinje neurons, both postnatally and in adults. Furthermore, TGF‐β2 expression was observed postnatally in immature cerebellar neurons of both the external and internal granule cell layers. In the external granule cell layer, the frequency of TGF‐β2 transcripts increased until postnatal day 10 and declined thereafter. In contrast to TGF‐β2, no TGF‐β1 mRNA was detected in cerebellar granule cells. TGF‐β3 expression was widely distributed in postnatal brains although at very low levels. The significance of TGF‐β2 production by cerebellar granule cells was further investigated using cultures of small cerebellar neurons. In these cultures reverse polymerase chain reaction analysis revealed expression of TGF‐β2 but low or almost undetectable levels of TGF‐β1 or ‐β3 mRNAs. Likewise, only TGF‐β2 protein in its latent form was identified in the culture supernatant; the release of TGF‐β2 was maximal during the second day in vitro. Furthermore, TGF‐β was found to inhibit the proliferation of cultured small cerebellar neurons. Taken together, these data suggest that TGF‐β2 is involved in the regulation of postnatal development of the cerebellum.

Collaboration


Dive into the Daniel B. Constam's collaboration.

Top Co-Authors

Avatar

Daniel Mesnard

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annik Prat

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadav Ben-Haim

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcela Guzman-Ayala

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Melitta Schachner

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge