Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel B. Fagre is active.

Publication


Featured researches published by Daniel B. Fagre.


Science | 2011

The unusual nature of recent snowpack declines in the North American cordillera.

Gregory T. Pederson; Stephen T. Gray; Connie A. Woodhouse; Julio L. Betancourt; Daniel B. Fagre; Jeremy S. Littell; Emma Watson; Brian H. Luckman; Lisa J. Graumlich

The snowpack covering the mountains of western North America has decreased dramatically during the past 50 years. In western North America, snowpack has declined in recent decades, and further losses are projected through the 21st century. Here, we evaluate the uniqueness of recent declines using snowpack reconstructions from 66 tree-ring chronologies in key runoff-generating areas of the Colorado, Columbia, and Missouri River drainages. Over the past millennium, late 20th century snowpack reductions are almost unprecedented in magnitude across the northern Rocky Mountains and in their north-south synchrony across the cordillera. Both the snowpack declines and their synchrony result from unparalleled springtime warming that is due to positive reinforcement of the anthropogenic warming by decadal variability. The increasing role of warming on large-scale snowpack variability and trends foreshadows fundamental impacts on streamflow and water supplies across the western United States.


BioScience | 2003

Modeled Climate-Induced Glacier Change in Glacier National Park, 1850–2100

Myrna Hall; Daniel B. Fagre

Abstract The glaciers in the Blackfoot–Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45°C (± 0.15°C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide–induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.


Physical Geography | 2007

Alpine treeline of western North America; linking organism-to-landscape dynamics

George P. Malanson; David Butler; Daniel B. Fagre; Stephen J. Walsh; Diana F. Tomback; Lori D. Daniels; Lynn M. Resler; William K. Smith; Daniel J. Weiss; David L. Peterson; Andrew G. Bunn; Christopher A. Hiemstra; Daniel Liptzin; Patrick S. Bourgeron; Zehao Shen; Constance I. Millar

Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.


Climatic Change | 2003

TAKING THE PULSE OF MOUNTAINS: ECOSYSTEM RESPONSES TO CLIMATIC VARIABILITY

Daniel B. Fagre; David L. Peterson; Amy E. Hessl

An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.


Journal of Climate | 2011

Climatic Controls on the Snowmelt Hydrology of the Northern Rocky Mountains

Gregory T. Pederson; Stephen T. Gray; Toby R. Ault; Wendy Marsh; Daniel B. Fagre; Andrew G. Bunn; Connie A. Woodhouse; Lisa J. Graumlich

Abstract The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ≤0°C) and changes in spring minim...


Physical Geography | 2007

Influences of Geomorphology and Geology on Alpine Treeline in the American West—More Important than Climatic Influences?

David Butler; George P. Malanson; Stephen J. Walsh; Daniel B. Fagre

The spatial distribution and pattern of alpine treeline in the American West reflect the overarching influences of geological history, lithology and structure, and geomorphic processes and landforms, and geologic and geomorphic factors—both forms and processes—can control the spatiotemporal response of the ecotone to climate change. These influences occur at spatial scales ranging from the continental scale to fine scale processes and landforms at the slope scale. Past geomorphic influences, particularly Pleistocene glaciation, have also left their impact on treeline, and treelines across the west are still adjusting to post-Pleistocene conditions within Pleistocene-created landforms. Current fine scale processes include solifluction and changes on relict solifluction and digging by animals. These processes should be examined in detail in future studies to facilitate a better understanding of where individual tree seedlings become established as a primary response of the ecotone to climate change.


Arctic, Antarctic, and Alpine Research | 2011

Mountain Treelines: a Roadmap for Research Orientation

George P. Malanson; Lynn M. Resler; Maaike Y. Bader; Friedrich-Karl Holtmeier; David Butler; Daniel J. Weiss; Lori D. Daniels; Daniel B. Fagre

Abstract For over 100 years, mountain treelines have been the subject of varied research endeavors and remain a strong area of investigation. The purpose of this paper is to examine aspects of the epistemology of mountain treeline research—that is, to investigate how knowledge on treelines has been acquired and the changes in knowledge acquisition over time, through a review of fundamental questions and approaches. The questions treeline researchers have raised and continue to raise have undoubtedly directed the current state of knowledge. A continuing, fundamental emphasis has centered on seeking the general cause of mountain treelines, thus seeking an answer to the question, “What causes treeline?” with a primary emphasis on searching for ecophysiological mechanisms of low-temperature limitation for tree growth and regeneration. However, treeline research today also includes a rich literature that seeks local, landscape-scale causes of treelines and reasons why treelines vary so widely in three-dimensional patterns from one location to the next, and this approach and some of its consequences are elaborated here. In recent years, both lines of research have been motivated greatly by global climate change. Given the current state of knowledge, we propose that future research directions focused on a spatial approach should specifically address cross-scale hypotheses using statistics and simulations designed for nested hierarchies; these analyses will benefit from geographic extension of treeline research.


Arctic, Antarctic, and Alpine Research | 2002

A Half Century of Change in Alpine Treeline Patterns at Glacier National Park, Montana, U.S.A.

Frederick L. Klasner; Daniel B. Fagre

Using sequential aerial photography, we identified changes in the spatial distribution of subalpine fir (Abies lasiocarpa) habitat at the alpine treeline ecotone. Six 40-ha study sites in the McDon...


Ecological Applications | 1998

Assessing simulated ecosystem processes for climate variability research at Glacier National Park, USA

Joseph D. White; Steven W. Running; Peter E. Thornton; Robert E. Keane; Kevin C. Ryan; Daniel B. Fagre; Carl H. Key

Glacier National Park served as a test site for ecosystem analyses that involved a suite of integrated models embedded within a geographic information system. The goal of the exercise was to provide managers with maps that could illustrate probable shifts in vegetation, net primary production (NPP), and hydrologic responses associated with two selected climatic scenarios. The climatic scenarios were (a) a recent 12-yr record of weather data, and (b) a reconstituted set that sequentially introduced in repeated 3-yr intervals wetter–cooler, drier–warmer, and typical conditions. To extrapolate the implications of changes in ecosystem processes and resulting growth and distribution of vegetation and snowpack, the model incorporated geographic data. With underlying digital elevation maps, soil depth and texture, extrapolated climate, and current information on vegetation types and satellite-derived estimates of leaf area indices, simulations were extended to envision how the park might look after 120 yr. The p...


Arctic, Antarctic, and Alpine Research | 2008

Spatial Reconstructions and Comparisons of Historic Snow Avalanche Frequency and Extent Using Tree Rings in Glacier National Park, Montana, U.S.A.

B. A. Reardon; G. T. Pederson; C. J. Caruso; Daniel B. Fagre

ABSTRACT Natural snow avalanches have periodically damaged infrastructure and disrupted railroad and highway traffic at the southwestern corner of Glacier National Park, Montana. The 94-year history of these disruptions constitutes an uncommon record of natural avalanches spanning over nine decades and presents a unique opportunity to examine how natural avalanche frequency and minimum extent have varied over time due to climatic or biophysical changes. This study compared the historic record of natural avalanches in one avalanche path with tree-ring evidence of avalanches from 109 cross sections and increment cores collected in the same path. Results from combined historic and tree-ring records yielded 27 avalanche years in the 1910–2003 chronology, with the historic record alone underestimating avalanche years by half. Mean return period was 3.2 years. Interpolated maps allowed for more spatially precise estimates of return periods throughout the runout zone than previous studies. The maps show return periods increase rapidly downslope from 2.3 to 25 years. Avalanche years were associated with positive Snow Water Equivalent anomalies at a nearby snow course. Minimum avalanche extent was highly variable but not associated with snowpack anomalies. Most avalanche years coincided with years in which the mean January–February Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO) 3.4 indices were neutral. The findings suggest that changes in Pacific climate patterns that influence snowfall could also alter the frequency of natural snow avalanches and could thus change disturbance patterns in the montane forests of the canyon.

Collaboration


Dive into the Daniel B. Fagre's collaboration.

Top Co-Authors

Avatar

Erich H. Peitzsch

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blase A. Reardon

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Gregory T. Pederson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jordy Hendrikx

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Peterson

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Selkowitz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jill S. Baron

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge