Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel B. Goodman is active.

Publication


Featured researches published by Daniel B. Goodman.


Science | 2011

Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement

Farren J. Isaacs; Peter A. Carr; Harris H. Wang; Marc J. Lajoie; Bram Sterling; Laurens Kraal; Andrew C. Tolonen; Tara A. Gianoulis; Daniel B. Goodman; Nikos Reppas; Christopher J. Emig; Duhee Bang; Samuel J. Hwang; Michael C. Jewett; Joseph M. Jacobson; George M. Church

Template-mediated, genome construction and assembly created a strain with 80 precise codon changes. We present genome engineering technologies that are capable of fundamentally reengineering genomes from the nucleotide to the megabase scale. We used multiplex automated genome engineering (MAGE) to site-specifically replace all 314 TAG stop codons with synonymous TAA codons in parallel across 32 Escherichia coli strains. This approach allowed us to measure individual recombination frequencies, confirm viability for each modification, and identify associated phenotypes. We developed hierarchical conjugative assembly genome engineering (CAGE) to merge these sets of codon modifications into genomes with 80 precise changes, which demonstrate that these synonymous codon substitutions can be combined into higher-order strains without synthetic lethal effects. Our methods treat the chromosome as both an editable and an evolvable template, permitting the exploration of vast genetic landscapes.


Science | 2013

Genomically recoded organisms expand biological functions.

Marc J. Lajoie; Alexis J. Rovner; Daniel B. Goodman; Hans-Rudolf Aerni; Adrian D. Haimovich; Gleb Kuznetsov; Jaron A. Mercer; Harris H. Wang; Peter A. Carr; Joshua A. Mosberg; Nadin Rohland; Peter G. Schultz; Joseph M. Jacobson; Jesse Rinehart; George M. Church; Farren J. Isaacs

Changing the Code Easily and efficiently expanding the genetic code could provide tools to genome engineers with broad applications in medicine, energy, agriculture, and environmental safety. Lajoie et al. (p. 357) replaced all known UAG stop codons with synonymous UAA stop codons in Escherichia coli MG1655, as well as release factor 1 (RF1; terminates translation at UAG), thereby eliminating natural UAG translation function without impairing fitness. This made it possible to reassign UAG as a dedicated codon to genetically encode nonstandard amino acids while avoiding deleterious incorporation at native UAG positions. The engineered E. coli incorporated nonstandard amino acids into its proteins and showed enhanced resistance to bacteriophage T7. In a second paper, Lajoie et al. (p. 361) demonstrated the recoding of 13 codons in 42 highly expressed essential genes in E. coli. Codon usage was malleable, but synonymous codons occasionally were nonequivalent in unpredictable ways. Bacteria engineered to use nonstandard amino acids show increased resistance to bacteriophage attack. We describe the construction and characterization of a genomically recoded organism (GRO). We replaced all known UAG stop codons in Escherichia coli MG1655 with synonymous UAA codons, which permitted the deletion of release factor 1 and reassignment of UAG translation function. This GRO exhibited improved properties for incorporation of nonstandard amino acids that expand the chemical diversity of proteins in vivo. The GRO also exhibited increased resistance to T7 bacteriophage, demonstrating that new genetic codes could enable increased viral resistance.


Science | 2013

Causes and Effects of N-Terminal Codon Bias in Bacterial Genes

Daniel B. Goodman; George M. Church; Sriram Kosuri

Exploiting Redundancy The genetic code is redundant—multiple codons can code for the same amino acid. So-called synonymous codon changes within genes can nonetheless have substantial affects on protein expression, which have been attributed to changes in the structure of 5′ messenger RNAs, among other factors. Goodman et al. (p. 475, published online 26 September) built and measured the expression of a synthetic library of 14,000 variant N-terminal sequences of 137 Escherichia coli genes to show that, unexpectedly, rare codons had a bigger effect on increasing protein expression than more common codons. Increased RNA structure downstream of translation initiation appeared to represent the major determinant of expression differences owing to codon usage. The structure of the 5′ ends of messenger RNAs downstream of the start of protein translation has a major effect on protein expression. Most amino acids are encoded by multiple codons, and codon choice has strong effects on protein expression. Rare codons are enriched at the N terminus of genes in most organisms, although the causes and effects of this bias are unclear. Here, we measure expression from >14,000 synthetic reporters in Escherichia coli and show that using N-terminal rare codons instead of common ones increases expression by ~14-fold (median 4-fold). We quantify how individual N-terminal codons affect expression and show that these effects shape the sequence of natural genes. Finally, we demonstrate that reduced RNA structure and not codon rarity itself is responsible for expression increases. Our observations resolve controversies over the roles of N-terminal codon bias and suggest a straightforward method for optimizing heterologous gene expression in bacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Composability of regulatory sequences controlling transcription and translation in Escherichia coli

Sriram Kosuri; Daniel B. Goodman; Guillaume Cambray; Vivek K. Mutalik; Yuan Gao; Adam P. Arkin; Drew Endy; George M. Church

The inability to predict heterologous gene expression levels precisely hinders our ability to engineer biological systems. Using well-characterized regulatory elements offers a potential solution only if such elements behave predictably when combined. We synthesized 12,563 combinations of common promoters and ribosome binding sites and simultaneously measured DNA, RNA, and protein levels from the entire library. Using a simple model, we found that RNA and protein expression were within twofold of expected levels 80% and 64% of the time, respectively. The large dataset allowed quantitation of global effects, such as translation rate on mRNA stability and mRNA secondary structure on translation rate. However, the worst 5% of constructs deviated from prediction by 13-fold on average, which could hinder large-scale genetic engineering projects. The ease and scale this of approach indicates that rather than relying on prediction or standardization, we can screen synthetic libraries for desired behavior.


Science | 2016

Design, synthesis, and testing toward a 57-codon genome

Nili Ostrov; Matthieu Landon; Marc Güell; Gleb Kuznetsov; Jun Teramoto; Natalie Cervantes; Minerva Zhou; Kerry Singh; Michael G. Napolitano; Mark Moosburner; Ellen Shrock; Benjamin W. Pruitt; Nicholas Conway; Daniel B. Goodman; Cameron L. Gardner; Gary Tyree; Alexandra Gonzales; Barry L. Wanner; Julie E. Norville; Marc J. Lajoie; George M. Church

Recoding and repurposing genetic codons By recoding bacterial genomes, it is possible to create organisms that can potentially synthesize products not commonly found in nature. By systematic replacement of seven codons with synonymous alternatives for all protein-coding genes, Ostrov et al. recoded the Escherichia coli genome. The number of codons in the E. coli genetic code was reduced from 64 to 57 by removing instances of the UAG stop codon and excising two arginine codons, two leucine codons, and two serine codons. Over 90% functionality was successfully retained. In 10 cases, reconstructed bacteria were not viable, but these few failures offered interesting insights into genome-design challenges and what is needed for a viable genome. Science, this issue p. 819 A computational and experimental framework for genome recoding enables synonymous codon replacement in Escherichia coli. Recoding—the repurposing of genetic codons—is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli

Michael G. Napolitano; Matthieu Landon; Christopher J. Gregg; Marc J. Lajoie; Lakshmi Narasimhan Govindarajan; Joshua A. Mosberg; Gleb Kuznetsov; Daniel B. Goodman; Oscar Vargas-Rodriguez; Farren J. Isaacs; Dieter Söll; George M. Church

Significance This work presents the genome-wide replacement of all rare AGR (AGA and AGG) arginine codons in the essential genes of Escherichia coli with synonymous CGN alternatives. Synonymous codon substitutions can lethally impact noncoding function by disrupting mRNA secondary structure and ribosomal binding site-like motifs. Here we quantitatively define the range of tolerable deviation in these metrics and use this relationship to provide critical insight into codon choice in recoded genomes. This work demonstrates that genome-wide removal of AGR is likely to be possible and provides a framework for designing genomes with radically altered genetic codes. The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 “recalcitrant” AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional “safe replacement zone” (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes.


Genome Biology | 2017

Optimizing complex phenotypes through model-guided multiplex genome engineering

Gleb Kuznetsov; Daniel B. Goodman; Gabriel T. Filsinger; Matthieu Landon; Nadin Rohland; John Aach; Marc J. Lajoie; George M. Church

We present a method for identifying genomic modifications that optimize a complex phenotype through multiplex genome engineering and predictive modeling. We apply our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhibited by the 63-codon E. coli strain C321.∆A. By introducing targeted combinations of changes in multiplex we generate rich genotypic and phenotypic diversity and characterize clones using whole-genome sequencing and doubling time measurements. Regularized multivariate linear regression accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and context-dependence of genome editing efficiency that would confound other strategies.


ACS Synthetic Biology | 2017

DNAplotlib: Programmable Visualization of Genetic Designs and Associated Data

Bryan S. Der; Emerson Glassey; Bryan A. Bartley; Casper Enghuus; Daniel B. Goodman; D. Benjamin Gordon; Christopher A. Voigt; Thomas E. Gorochowski

DNAplotlib ( www.dnaplotlib.org ) is a computational toolkit for the programmable visualization of highly customizable, standards-compliant genetic designs. Functions are provided to aid with both visualization tasks and to extract and overlay associated experimental data. High-quality output is produced in the form of vector-based PDFs, rasterized images, and animated movies. All aspects of the rendering process can be easily customized or extended by the user to cover new forms of genetic part or regulation. DNAplotlib supports improved communication of genetic design information and offers new avenues for static, interactive and dynamic visualizations that map and explore the links between the structure and function of genetic parts, devices and systems; including metabolic pathways and genetic circuits. DNAplotlib is cross-platform software developed using Python.


bioRxiv | 2016

Genome Editing With Targeted Deaminases

Luhan Yang; Adrian W. Briggs; Wei Leong Chew; Prashant Mali; Marc Güell; John Aach; Daniel B. Goodman; David Cox; Yinan Kan; Emal Lesha; Venkataramanan Soundararajan; Feng Zhang; George M. Church

Precise genetic modifications are essential for biomedical research and gene therapy. Yet, traditional homology-directed genome editing is limited by the requirements for DNA cleavage, donor DNA template and the endogenous DNA break-repair machinery. Here we present programmable cytidine deaminases that enable site-specific cytidine to thymidine (C-to-T) genomic edits without the need for DNA cleavage. Our targeted deaminases are efficient and specific in Escherichia coli, converting a genomic C-to-T with 13% efficiency and 95% accuracy. Edited cells do not harbor unintended genomic abnormalities. These novel enzymes also function in human cells, leading to a site-specific C-to-T transition in 2.5% of cells with reduced toxicity compared with zinc-finger nucleases. Targeted deaminases therefore represent a platform for safer and effective genome editing in prokaryotes and eukaryotes, especially in systems where DSBs are toxic, such as human stem cells and repetitive elements targeting.


Nature Communications | 2017

Corrigendum: Engineering and optimising deaminase fusions for genome editing

Luhan Yang; Adrian W. Briggs; Wei Leong Chew; Prashant Mali; Marc Güell; John Aach; Daniel B. Goodman; David Cox; Yinan Kan; Emal Lesha; Venkataramanan Soundararajan; Feng Zhang; George M. Church

This corrects the article DOI: 10.1038/ncomms13330.

Collaboration


Dive into the Daniel B. Goodman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc J. Lajoie

Wyss Institute for Biologically Inspired Engineering

View shared research outputs
Top Co-Authors

Avatar

Gleb Kuznetsov

Wyss Institute for Biologically Inspired Engineering

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge