Daniel B. Kassel
Takeda Pharmaceutical Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel B. Kassel.
European Journal of Pharmacology | 2008
Bumsup Lee; Lihong Shi; Daniel B. Kassel; Tomoko Asakawa; Koji Takeuchi; Ronald J. Christopher
The aim of the present research was to characterize the pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel quinazolinone-based dipeptidyl peptidase-4 (DPP-4) inhibitor. Alogliptin potently inhibited human DPP-4 in vitro (mean IC(50), ~ 6.9 nM) and exhibited > 10,000-fold selectivity for DPP-4 over the closely related serine proteases DPP-2, DPP-8, DPP-9, fibroblast activation protein/seprase, prolyl endopeptidase, and tryptase (IC(50) > 100,000 nM). Absolute oral bioavailability of alogliptin in rats, dogs, and monkeys was 45%, 86%, and 72% to 88%, respectively. After a single oral dose of alogliptin, plasma DPP-4 inhibition was observed within 15 min and maximum inhibition was > 90% in rats, dogs, and monkeys; inhibition was sustained for 12 h in rats (43%) and dogs (65%) and 24 h in monkeys (> 80%). From E(max) modeling, 50% inhibition of DPP-4 activity was observed at a mean alogliptin plasma concentration (EC(50)) of 3.4 to 5.6 ng/ml (10.0 to 16.5 nM) in rats, dogs, and monkeys. In Zucker fa/fa rats, a single dose of alogliptin (0.3, 1, 3, and 10 mg/kg) inhibited plasma DPP-4 (91% to 100% at 2 h and 20% to 66% at 24 h), increased plasma GLP-1 (2- to 3-fold increase in AUC(0-20 min)) and increased early-phase insulin secretion (1.5- to 2.6-fold increase in AUC(0-20 min)) and reduced blood glucose excursion (31%-67% decrease in AUC(0-90 min)) after oral glucose challenge. Alogliptin (30 and 100 mg/kg) had no effect on fasting plasma glucose in normoglycemic rats. In summary, these data suggest that alogliptin is a potent and highly selective DPP-4 inhibitor with demonstrated efficacy in Zucker fa/fa rats and potential for once-daily dosing in humans.
Journal of Medicinal Chemistry | 2011
Zhiyuan Zhang; Michael B. Wallace; Jun Feng; Jeffrey A. Stafford; Robert J. Skene; Lihong Shi; Bumsup Lee; Kathleen Aertgeerts; Andy Jennings; Rongda Xu; Daniel B. Kassel; Stephen W. Kaldor; Marc Navre; David R. Webb; Stephen L. Gwaltney
The discovery of two classes of heterocyclic dipeptidyl peptidase IV (DPP-4) inhibitors, pyrimidinones and pyrimidinediones, is described. After a single oral dose, these potent, selective, and noncovalent inhibitors provide sustained reduction of plasma DPP-4 activity and lowering of blood glucose in animal models of diabetes. Compounds 13a, 27b, and 27j were selected for development.
Bioorganic & Medicinal Chemistry Letters | 2008
Michael B. Wallace; Jun Feng; Zhiyuan Zhang; Robert J. Skene; Lihong Shi; Christopher L. Caster; Daniel B. Kassel; Rongda Xu; Stephen L. Gwaltney
A novel series of non-covalent, benzimidazole-based inhibitors of DPP-4 has been developed from a small fragment hit using structure-based drug design. A highly versatile synthetic route was created for the development of SAR, which led to the discovery of potent and selective inhibitors with excellent pharmaceutical properties.
Journal of Biomolecular Screening | 2010
Kheng B. Lim; Can C. Ozbal; Daniel B. Kassel
A high-throughput online solid-phase extraction/tandem mass spectrometry (online SPE/MS/MS) system has been developed to support rapid evaluation of drug discovery compounds for possible drug-drug interaction (DDI). Each compound is evaluated for its DDI potential by incubating over a range of 8 test concentrations and against a panel of 6 cytochrome P450 (CYP) enzymes, 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. Previously, a postassay pooling and a 2-min gradient LC/MS/MS method had been reported to increase sample throughput, allowing for a 96-well plate of samples to be analyzed in under 4 h. The development of a new online SPE/MS/MS system has reduced the analysis time to less than 15 min per 96-well plate, translating to a 15-fold time savings compared to the 2-min LC/MS/MS method. Sampling precision without internal standard correction ranged from 3.1% to 5.6% relative standard deviation, and the carryover was determined to be between 1.0% and 4.1%. One hundred twenty in-house compounds were assayed and pooled for analyses using both the online SPE/MS/MS and LC/MS/MS, and the correlation coefficients ranged from 0.89 to 1.13, when comparing the IC50 results obtained from the 2 approaches for each of the CYP enzymes.
Journal of Chromatography A | 2010
Rongda Xu; Melinda Manuel; Joshua Cramlett; Daniel B. Kassel
One of the most commonly performed in vitro ADME assays during the lead generation and lead optimization stage of drug discovery is metabolic stability evaluation. Metabolic stability is typically assessed in liver microsomes, which contain Phase I metabolizing enzymes, mainly cytochrome P450 enzymes (CYPs). The amount of parent drug metabolized by these CYPs is determined by LC/MS/MS. The metabolic stability data are typically used to rank order compounds for in vivo evaluation. We describe a streamlined and intelligent workflow for the metabolic stability assay that permits high throughput analyses to be carried out while maintaining the standard of high quality. This is accomplished in the following ways: a novel post-incubation pooling strategy based on cLogD(3.0) values, coupled with ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS), enables sample analysis times to be reduced significantly while ensuring adequate chromatographic separation of compounds within a group, so as to reduce the likelihood of compound interference. Assay quality and fast turnaround of data reports is ensured by performing automated real-time intelligent re-analysis of discrete samples for compounds that do not pass user-definable criteria during the pooling analysis. Intelligent, user-independent data acquisition and data evaluation are accomplished via a custom visual basic program that ties together every step in the workflow, including cassette compound selection, compound incubation, compound optimization, sample analysis and re-analysis (when appropriate), data processing, data quality evaluation, and database upload. The workflow greatly reduces labor and improves data turnaround time while maintaining high data quality.
Journal of Chromatography A | 2011
Lu Zeng; Rongda Xu; Yinong Zhang; Daniel B. Kassel
A new analytical two-dimensional supercritical fluid chromatography/mass spectrometry system (2D SFC/SFC/MS) has been designed and implemented to enhance the efficiency and quality of analytical support in drug discovery. The system consists of a Berger analytical SFC pump and a modifier pump, a Waters ZQ 2000 mass spectrometer, a set of switching valves, and a custom software program. The system integrates achiral and chiral separations into a single run to perform enantiomeric analysis and separation of a racemic compound from a complex mixture without prior clean up. The achiral chromatography in the first dimension separates the racemate from all other impurities, such as un-reacted starting materials and by-products. Mass-triggered fractionation is used to selectively fractionate the targeted racemic compound based on its molecular weight. The purified racemate from the achiral chromatography in the first dimension is then transferred to the chiral column in the second dimension to conduct the enantiomeric separation and analysis. A control software program, we coined SFC2D, was developed and integrated with MassLynx to retrieve acquisition status, current sample information, and real time mass spectrometric data as they are acquired. The SFC2D program also monitors the target ion signal to carry out mass-triggered fractionation by switching the valve to fractionate the desired peak. The 2D SFC/SFC/MS system uses one CO(2) pump and one modifier pump for both first and second dimension chromatographic separations using either gradient or isocratic elution. Similarly, a preparative 2D SFC/SFC/MS system has been constructed by modifying an existing Waters preparative LC/MS system. All components except the back pressure regulator are from the original LC/MS system. Applications of the 2D SFC/SFC/MS methods to the separation and the analysis of racemic pharmaceutical samples in complex mixtures demonstrated that an achiral separation (in first dimension) and a chiral separation (in second dimension) can be successfully combined into a single, streamlined process both in analytical and preparative scale.
Bioorganic & Medicinal Chemistry Letters | 1996
Lee-Chiang Lo; Chih-Hung L. Lo; Kim D. Janda; Daniel B. Kassel; Frank M. Raushel
Abstract A mechanism based reaction probe was synthesized and shown to modify a bacterial phosphotriesterase; this strategy for generating a probe is general and should allow the isolation of a host of unique catalysts.
Chirality | 2008
Derek B. Laskar; Lu Zeng; Rongda Xu; Daniel B. Kassel
Enantiomeric excess (ee) was evaluated for two internally synthesized compound libraries using a high-throughput automated, intelligent four-channel parallel supercritical fluid chromatography/mass spectrometry system equipped with a multiplexed ion source interface (SFC/MS-MUX). The two libraries contained compounds spanning a wide range of enantiomeric ratios with structurally diverse chemical scaffolds and stereogenic centers. The system analyzed each sample simultaneously against four chiral columns using up to six organic modifiers. Enhancements to our previously published parallel supercritical fluid chromatography/mass spectrometry system were implemented to address the challenges associated with automated trace enantiomer identification and quantitation. A reversal of enantiomer elution order was observed for several samples across multiple CSPs and modifiers. The relationship between elution order and % ee accuracy is presented for compounds exhibiting high, middle and low % ee values. Despite incidences in which the minor enantiomer eluted prior to the major enantiomer with less than baseline resolution, the overall % ee was in agreement with separations in which full baseline resolution was achieved. The methods presented here demonstrate the value and utility of high-throughput ee determinations to support drug discovery and development programs.
Methods of Molecular Biology | 2013
Kheng B. Lim; Can C. Ozbal; Daniel B. Kassel
We describe here a high-throughput assay to support rapid evaluation of drug discovery compounds for possible drug-drug interaction (DDI). Each compound is evaluated for its DDI potential by incubating over a range of eight concentrations and against a panel of six cytochrome P450 (CYP) enzymes: 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. The method utilizes automated liquid handling for sample preparation, and online solid-phase extraction/tandem mass spectrometry (SPE/MS/MS) for sample analyses. The system is capable of generating two 96-well assay plates in 30 min, and completes the data acquisition and analysis of both plates in about 30 min. Many laboratories that perform the CYP inhibition screening automate only part of the processes leaving a throughput bottleneck within the workflow. The protocols described in this chapter are aimed to streamline the entire process from assay to data acquisition and processing by incorporating automation and utilizing high-precision instrument to maximize throughput and minimize bottleneck.
Journal of Medicinal Chemistry | 2007
Jun Feng; Zhiyuan Zhang; Michael B. Wallace; Jeffrey A. Stafford; Stephen W. Kaldor; Daniel B. Kassel; Marc Navre; Lihong Shi; Robert J. Skene; Tomoko Asakawa; Koji Takeuchi; Rongda Xu; David R. Webb; Stephen L. Gwaltney