Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel B. Rifkin is active.

Publication


Featured researches published by Daniel B. Rifkin.


Cell | 1999

A Mechanism for Regulating Pulmonary Inflammation and Fibrosis: The Integrin αvβ6 Binds and Activates Latent TGF β1

John S. Munger; Xiaozhu Huang; Hisaaki Kawakatsu; Mark J.D. Griffiths; Stephen L. Dalton; Jianfeng Wu; Jean-Francois Pittet; Naftali Kaminski; Chrystelle V. Garat; Michael A. Matthay; Daniel B. Rifkin; Dean Sheppard

Transforming growth factor beta (TGF beta) family members are secreted in inactive complexes with a latency-associated peptide (LAP), a protein derived from the N-terminal region of the TGF beta gene product. Extracellular activation of these complexes is a critical but incompletely understood step in regulation of TGF beta function in vivo. We show that TGF beta 1 LAP is a ligand for the integrin alpha v beta 6 and that alpha v beta 6-expressing cells induce spatially restricted activation of TGF beta 1. This finding explains why mice lacking this integrin develop exaggerated inflammation and, as we show, are protected from pulmonary fibrosis. These data identify a novel mechanism for locally regulating TGF beta 1 function in vivo by regulating expression of the alpha v beta 6 integrin.ated, and in this configuration TGFb is unable to bind University of California, San Francisco to its receptors; that is, TGFb is latent. In most cases, San Francisco, California 94143-0854 the complex of LAP and TGFb (the small latent complex 5 Department of Medicine SLC) is joined by latent TGFb binding protein 1 (LTBP1), 6 Cell Biology and Kaplan Cancer Center a matrix protein with sequence similarity to the fibrillins, New York University School of Medicine and the complex of all three proteins is called the large New York, New York 10016-6402 latent complex (LLC). Latent TGFb can be linked by


Nature Genetics | 2005

A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2

Bart Loeys; Junji Chen; Enid Neptune; Daniel P. Judge; Megan Podowski; Tammy Holm; Jennifer Meyers; Carmen C. Leitch; Nicholas Katsanis; Neda Sharifi; F. Lauren Xu; Loretha Myers; Philip J. Spevak; Duke E. Cameron; Julie De Backer; Jan Hellemans; Yan Chen; Elaine C. Davis; Catherine L. Webb; Wolfram Kress; Paul Coucke; Daniel B. Rifkin; Anne De Paepe; Harry C. Dietz

We report heterozygous mutations in the genes encoding either type I or type II transforming growth factor β receptor in ten families with a newly described human phenotype that includes widespread perturbations in cardiovascular, craniofacial, neurocognitive and skeletal development. Despite evidence that receptors derived from selected mutated alleles cannot support TGFβ signal propagation, cells derived from individuals heterozygous with respect to these mutations did not show altered kinetics of the acute phase response to administered ligand. Furthermore, tissues derived from affected individuals showed increased expression of both collagen and connective tissue growth factor, as well as nuclear enrichment of phosphorylated Smad2, indicative of increased TGFβ signaling. These data definitively implicate perturbation of TGFβ signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.


Cell Host & Microbe | 2008

Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine

Ivaylo I. Ivanov; Rosa de Llanos Frutos; Nicolas Manel; Keiji Yoshinaga; Daniel B. Rifkin; R. Balfour Sartor; B. Brett Finlay; Dan R. Littman

The requirements for in vivo steady state differentiation of IL-17-producing T-helper (Th17) cells, which are potent inflammation effectors, remain obscure. We report that Th17 cell differentiation in the lamina propria (LP) of the small intestine requires specific commensal microbiota and is inhibited by treating mice with selective antibiotics. Mice from different sources had marked differences in their Th17 cell numbers and animals lacking Th17 cells acquired them after introduction of bacteria from Th17 cell-sufficient mice. Differentiation of Th17 cells correlated with the presence of cytophaga-flavobacter-bacteroidetes (CFB) bacteria in the intestine and was independent of toll-like receptor, IL-21 or IL-23 signaling, but required appropriate TGF-beta activation. Absence of Th17 cell-inducing bacteria was accompanied by increase in Foxp3+ regulatory T cells (Treg) in the LP. Our results suggest that composition of intestinal microbiota regulates the Th17:Treg balance in the LP and may thus influence intestinal immunity, tolerance, and susceptibility to inflammatory bowel diseases.


Journal of Cell Biology | 2007

Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix

Pierre-Jean Wipff; Daniel B. Rifkin; Jean-Jacques Meister; Boris Hinz

The conjunctive presence of mechanical stress and active transforming growth factor β1 (TGF-β1) is essential to convert fibroblasts into contractile myofibroblasts, which cause tissue contractures in fibrotic diseases. Using cultured myofibroblasts and conditions that permit tension modulation on the extracellular matrix (ECM), we establish that myofibroblast contraction functions as a mechanism to directly activate TGF-β1 from self-generated stores in the ECM. Contraction of myofibroblasts and myofibroblast cytoskeletons prepared with Triton X-100 releases active TGF-β1 from the ECM. This process is inhibited either by antagonizing integrins or reducing ECM compliance and is independent from protease activity. Stretching myofibroblast-derived ECM in the presence of mechanically apposing stress fibers immediately activates latent TGF-β1. In myofibroblast-populated wounds, activation of the downstream targets of TGF-β1 signaling Smad2/3 is higher in stressed compared to relaxed tissues despite similar levels of total TGF-β1 and its receptor. We propose activation of TGF-β1 via integrin-mediated myofibroblast contraction as a potential checkpoint in the progression of fibrosis, restricting autocrine generation of myofibroblasts to a stiffened ECM.


Cell | 1986

Tumor invasion through the human amniotic membrane: Requirement for a proteinase cascade

Paolo Mignatti; Edith S. Robbins; Daniel B. Rifkin

To understand the role of proteinases in tumor invasion, the effects of inhibitors of metallo-, serine-, and cysteine-proteinases on this process were studied using 125I-iododeoxyuridine-labeled B16/BL6 cells grown on human amnion basement membrane. Cellular invasion was quantitated by measuring the radioactivity associated with the amniotic membrane after the B16/BL6 cells on the basement membrane were removed by lysis followed by scraping. The results obtained with proteinase inhibitors showed that inhibitors of collagenase and plasmin prevented invasion of the amnion. Tissue invasion was also blocked by antiurokinase antibodies. On the contrary, cysteine-proteinase inhibitors and anti-tissue plasminogen activator antiserum were ineffective. Mersalyl, a compound known to activate collagenase, stimulated invasion under conditions where plasmin formation or activity were inhibited. Evidence for the role of a plasminogen activator-plasmin-collagenase activation cascade in B16 invasion is provided.


Developmental Biology | 1988

In vitro neurite extension by granule neurons is dependent upon astroglial-derived fibroblast growth factor

Mary E. Hatten; M. Lynch; R.E. Rydel; J. Sanchez; Jacquelyn Joseph-Silverstein; David Moscatelli; Daniel B. Rifkin

When grown in the absence of astroglial cells, purified mouse cerebellar granule neurons survive less than 36 hr and do not extend neurites. Here we report that low concentrations of basic fibroblast growth factor (bFGF, 1-25 ng/ml) maintained the viability and promoted the differentiation of purified granule neurons. The effect of bFGF on granule cell neurite outgrowth was dose dependent. Neurite outgrowth was stimulated markedly in the presence of 1-25 ng/ml bFGF, but effects were not seen below 1 ng/ml or above 50 ng/ml. When affinity-purified antibodies against bFGF (1-5 micrograms/ml) were added either to purified granule cells or to co-cultures of neurons and astroglial cells, process extension by granule neurons was severely impaired. The inhibition of neurite outgrowth in the presence of anti-bFGF antibodies was reversed by the addition of 25 ng/ml of exogenous bFGF. In addition to neuronotrophic effects, bFGF influenced the rate of growth of the astroglial cells. This result depended on whether the astroglia were grown in isolation from neurons, where low doses of bFGF (10-25 ng) stimulated glial growth, or in coculture with neurons, where much higher doses of bFGF (100-250 ng/ml) were needed for glial mitogenesis. Immunoprecipitation of lysates from 35S-labeled cerebellar astroglial cells with anti-bFGF antibodies revealed a single band after SDS-PAGE at 18,000 Da, the molecular weight of bFGF. These results indicate that glial cells synthesize bFGF and are possibly an endogenous source of bFGF in cerebellar cultures. Thus, astroglial cells synthesize soluble factors needed for neuronal differentiation.


Journal of Cell Biology | 2004

Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1

Justin P. Annes; Yan Chen; John S. Munger; Daniel B. Rifkin

Transforming growth factor-βs (TGF-β) are secreted as inactive complexes containing the TGF-β, the TGF-β propeptide, also called the latency-associated protein (LAP), and the latent TGF-β binding protein (LTBP). Extracellular activation of this complex is a critical but incompletely understood step in TGF-β regulation. We have investigated the role of LTBP in modulating TGF-β generation by the integrin αVβ6. We show that even though αvβ6 recognizes an RGD on LAP, LTBP-1 is required for αVβ6-mediated latent TGF-β activation. The domains of LTBP-1 necessary for activation include the TGF-β propeptide-binding domain and a basic amino acid sequence (hinge domain) with ECM targeting properties. Our results demonstrate an LTBP-1 isoform-specific function in αVβ6-mediated latent TGF-β activation; LTBP-3 is unable to substitute for LTBP-1 in this assay. The results reveal a functional role for LTBP-1 in latent TGF-β activation and suggest that activation of specific latent complexes is regulated by distinct mechanisms that may be determined by the LTBP isoform and its potential interaction with the matrix.


Enzyme and Protein | 1996

PLASMINOGEN ACTIVATORS AND MATRIX METALLOPROTEINASES IN ANGIOGENESIS

Paolo Mignatti; Daniel B. Rifkin

In the initial stages of capillary formation (angiogenesis) microvascular endothelial cells of preexisting blood vessels locally degrade the underlying basal lamina and invade into the stroma of the tissue to be vascularized. A consistent body of experimental evidence has shown that this process requires a wide array of dedradative enzymes. Components of the plasminogen activator (PA)-plasmin system and of the matrix metalloproteinase (MMP) family play important roles. PAs trigger a proteinase cascade that results is the generation of high local concentrations of plasmin and active MMPs. This increase in proteolytic activity has three major consequences: it permits endothelial cell degradation and invasion of the vessel basal lamina, generates extracellular matrix (ECM) degradation products that are chemotactic for endothelial cells, and activates and mobilizes growth factors localized in the ECM. In addition, urokinase-type PA modulates some endothelial cell functions, including proliferation and migration, with a mechanism independent of proteolytic activity. PA and MMP activities are modulated in endothelial cells by complex mechanisms, including transcriptional regulation by a variety of growth factors and cytokines with angiogenic activity, extracellular control of the proteolytic activities by tissue inhibitors, and interaction with binding sites on the cell membrane and ECM.


Molecular and Cellular Biology | 1986

Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration.

Marco Presta; David Moscatelli; Jacquelyn Joseph-Silverstein; Daniel B. Rifkin

A 17,500-dalton protein which stimulates plasminogen activator production in cultured bovine capillary endothelial cells has been purified from a SK-Hep-1 human hepatoma cell lysate by using heparin affinity chromatography and fast protein-liquid ion exchange chromatography. The purified molecule stimulated plasminogen activator production in a dose-dependent manner between 0.01 and 1 ng/ml. It also stimulated collagenase synthesis, DNA synthesis, and motility in capillary endothelial cells in the same concentration range. This molecule was identified as a basic fibroblast growth factor-like molecule on the basis of its biological activity, its affinity for heparin-Sepharose, and its cross-reactivity with a polyclonal antibody raised against the human placental basic fibroblast growth factor.


Stem Cells | 1997

TGF‐β Latency: Biological Significance and Mechanisms of Activation

Pierre-Emmanuel Gleizes; John S. Munger; Irene Nunes; John G. Harpel; Roberta Mazzieri; Irene Noguera; Daniel B. Rifkin

Transforming growth factor (TGF‐)β is secreted as a latent complex in which the mature growth factor remains associated with its propeptide. In order to elicit a biological response, the cytokine must be released from the latent complex, a process termed latent TGF‐β activation or TGF‐β formation. Although latent TGF‐β activation is a critical step in the regulation of its activity, little is known about the molecular mechanisms that lead to the production of active TGF‐β. In this article, we present an overview of the data available on this topic, and we propose a tentative model for the mechanism of TGF‐β formation based upon the observations with different cell systems and on recent findings on the structure of the latent TGF‐β complex.

Collaboration


Dive into the Daniel B. Rifkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Ramirez

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry C. Dietz

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge