Daniel Barolet
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Barolet.
Journal of Investigative Dermatology | 2009
Daniel Barolet; Charles J. Roberge; François A. Auger; Annie Boucher; Lucie Germain
It has been reported that skin aging is associated with a downregulation in collagen synthesis and an elevation in matrix metalloproteinase (MMP) expression. This study investigated the potential of light-emitting diode (LED) treatments with a 660 nm sequentially pulsed illumination formula in the photobiomodulation of these molecules. Histological and biochemical changes were first evaluated in a tissue-engineered Human Reconstructed Skin (HRS) model after 11 sham or LED light treatments. LED effects were then assessed in aged/photoaged individuals in a split-face single-blinded study. Results yielded a mean percent difference between LED-treated and non-LED-treated HRS of 31% in levels of type-1 procollagen and of -18% in MMP-1. No histological changes were observed. Furthermore, profilometry quantification revealed that more than 90% of individuals showed a reduction in rhytid depth and surface roughness, and, via a blinded clinical assessment, that 87% experienced a reduction in the Fitzpatrick wrinkling severity score after 12 LED treatments. No adverse events or downtime were reported. Our study showed that LED therapy reversed collagen downregulation and MMP-1 upregulation. This could explain the improvements in skin appearance observed in LED-treated individuals. These findings suggest that LED at 660 nm is a safe and effective collagen-enhancement strategy.
Lasers in Surgery and Medicine | 2010
Daniel Barolet; Annie Boucher
Hypertrophic and keloid scars result from alterations in the wound healing process. Treating abnormal scars remains an important challenge. The aim of this case series was to investigate the effectiveness of near infrared (NIR) light emitting diode (LED) treatment as a prophylactic method to alter the wound healing process in order to avoid or attenuate the formation of hypertrophic scars or keloids.
Journal of Photochemistry and Photobiology B-biology | 2016
Daniel Barolet; François Christiaens; Michael R. Hamblin
In the last decade, it has been proposed that the suns IR-A wavelengths might be deleterious to human skin and that sunscreens, in addition to their desired effect to protect against UV-B and UV-A, should also protect against IR-A (and perhaps even visible light). Several studies showed that NIR may damage skin collagen content via an increase inMMP-1 activity in the same manner as is known for UVR. Unfortunately, the artificial NIR light sources used in such studies were not representative of the solar irradiance. Yet, little has been said about the other side of the coin. This article will focus on key information suggesting that IR-A may be more beneficial than deleterious when the skin is exposed to the appropriate irradiance/dose of IR-A radiation similar to daily sun exposure received by people in real life.IR-A might even precondition the skin--a process called photo prevention--from an evolutionary standpoint since exposure to early morning IR-A wavelengths in sunlight may ready the skin for the coming mid-day deleterious UVR. Consequently IR-A appears to be the solution, not the problem. It does more good than bad for the skin. It is essentially a question of intensity and how we can learn from the sun.
Lasers in Surgery and Medicine | 2008
Daniel Barolet; Annie Boucher
As photoprotection with traditional sunscreen presents some limitations, the use of non‐traditional treatments to increase skin resistance to ultraviolet (UV) induced damage would prove particularly appealing. The purpose of this pilot study was to test the potential of non‐thermal pulsed light‐emitting diode (LED) treatments (660 nm) prior to UV exposure in the induction of a state of cellular resistance against UV‐induced erythema.
Lasers in Surgery and Medicine | 2010
Daniel Barolet; Annie Boucher
An alternative approach in the treatment of acne vulgaris is photodynamic therapy (PDT) that uses light and aminolevulinic acid (ALA)‐induced protoporphyrin IX (PpIX) production to eradicate Propionibacterium acnes found in acne lesions. PpIX formation is dependent on ALA percutaneaous penetration. In this study, to enhance ALA penetration and subsequent accumulation of PpIX, skin temperature was increased with radiant infrared (IR) prior to ALA–PDT application and compared to ALA–PDT alone in the treatment of inflammatory acne.
Journal of Biomedical Optics | 2010
Daniel Barolet; Pascale Duplay; Hélène Jacomy; Mathieu Auclair
The influence of emission parameters in low-level-light therapy on cellular responses is not yet fully understood. This study assessed the impact of various light delivery modes on collagen production in human primary fibroblast cultured in monolayers after three treatments with red light-emitting diode illumination (630 nm, 8 J/cm(2)). Human type I collagen was measured in cell culture supernatants with procollagen type I C-peptide enzyme immunoassay. Results demonstrated that, 72 h post-baseline, specific microsecond pulsing patterns had a more favorable impact on the ability of fibroblasts to produce collagen de novo than comparative conditions of continuous wave, pulsed 50% duty cycle, and millisecond pulsing domains. The cascade of events leading to collagen production by red illumination may be explained by the photodissociation of nitric oxide from cytochrome c oxidase. Short and intermittent light delivery might enhance this cellular event.
Lasers in Surgery and Medicine | 2012
Daniel Barolet
High fluence diode lasers with contact cooling have emerged as the mainstay modality for hair removal. However, the use of these devices is associated with pain and side effects, especially in patients with dark or tanned skin. A novel concept of depilation at low fluence using 810 nm diode laser has been introduced as a solution to these shortcomings. The purpose of this study was to evaluate the lasting efficacy and safety of low‐level fluence 810 nm (15 J/cm2) and high repetition rate (5 Hz) F1 Diode Laser™ therapy on hair reduction in patients with various skin types.
Journal of skin cancer | 2011
Daniel Barolet; Annie Boucher
Photodynamic therapy (PDT) with aminolevulinic acid (ALA) to treat nodular basal cell carcinoma (BCC) has been shown to be beneficial. The success rate of ALA-PDT in the treatment of nodular BCC is dependent on optimal penetration of the photosensitizing agent and subsequent PpIX production. To enhance topical delivery of drugs intradermally, a needleless jet injection (NLJI), which employs a high-speed jet to puncture the skin without the side effects of needles, was used in one patient with recurrent BCC of the nose. Photoactivation was then performed using red light emitting diode [CW @ λ 630 nm, irradiance 50 mW/cm2, total fluence 51 J/cm2] for 17 minutes. Excellent cosmesis was obtained. Aside from mild crusting present for six days, no other adverse signs were noted. Clinically, there was no recurrent lesion up two years postintervention. Additional studies in larger samples of subjects are needed to further evaluate this promising technique.
Journal of Biomedical Optics | 2014
Daniel Barolet
Abstract. Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud’s phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).
Proceedings of SPIE | 2012
Daniel Barolet
Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: Calcinosis, Raynauds phenomenon, Esophageal dysfunction, Sclerodactyly, and Telangiectasias. The transforming growth factor beta (TGF-β) has been identified has a major player in the pathogenic process, while low level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940nm using microsecond domain pulsing and continuous wave mode (CW) on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks, using a sequential pulsing mode on one elbow, and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, and health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Significant functional and morphologic improvements were observed after LLLT, with best results seen with the pulsing mode. No significant adverse effects were noted. Two mechanisms of action may be at play. The 940nm wavelength provides inside-out heating possibly vasodilating capillaries which in turn increases catabolic processes leading to a reduction of in situ calcinosis. LLLT may also improve symptoms by triggering a cascade of cellular reactions, including the modulation of inflammatory mediators.