Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Baumgartner is active.

Publication


Featured researches published by Daniel Baumgartner.


Journal of Shoulder and Elbow Surgery | 2011

Medial support by fibula bone graft in angular stable plate fixation of proximal humeral fractures: an in vitro study with synthetic bone

Georg Osterhoff; Daniel Baumgartner; Philippe Favre; Guido A. Wanner; Hans Gerber; Hans-Peter Simmen; Clément M. L. Werner

BACKGROUND Failure to achieve stable fixation with medial support in proximal humeral fractures can result in varus malalignment and cut-through of the proximal screws. The purpose of this study was to investigate the influence of an intramedullary fibula bone graft on the biomechanical properties of proximal humeral fractures stabilized by angular stable plate fixation in a bone model under cyclic loading. METHODS Two fixation techniques were tested in 20 composite analog humeri models. In group F- (n = 10), fractures were fixed by an anatomically formed locking plate system. In group F+ (n = 10), the same fixation system was used with an additional fibular graft model with a length of 6 cm inserted in an intramedullary manner. Active abduction was simulated for 400 cycles by use of a recently established testing setup. Fragment gap distance was measured, and thereby, intercyclic motion, fragment migration, and residual plastic deformation were determined. RESULTS The addition of a fibular graft to the fixation plate led to 5 times lower intercyclic motion, 2 times lower fragment migration, and 2 times less residual plastic deformation. Neither screw pullout, cut-through, nor implant failure was observed. CONCLUSION Medial support with an intramedullary fibular graft in an angular stable fixation of the proximal humerus in vitro increases overall stiffness of the bone-implant construct and reduces migration of the humeral head fragment. This technique might provide a useful tool in the treatment of displaced proximal humeral fractures, especially when there is medial comminution.


Journal of Orthopaedic Research | 2014

Supraspinatus tendon load during abduction is dependent on the size of the critical shoulder angle: A biomechanical analysis.

Christian Gerber; Jess G. Snedeker; Daniel Baumgartner; Arnd F. Viehöfer

Shoulders with supraspinatus (SSP) tears are associated with significantly larger critical shoulder angles (CSA) compared to disease‐free shoulders. We hypothesized that larger CSAs increase the ratio of joint shear to joint compression forces (defined as “instability ratio”), requiring substantially increased compensatory supraspinatus loads. A shoulder simulator with simulated deltoid, supraspinatus, infraspinatus/teres minor, and subscapularis musculotendinous units was constructed. The model was configured to represent either a normal CSA of 33° or a CSA characteristic of shoulders with rotator cuff tears (38°), and the components of the joint forces were measured. The instability ratio increased for the 38° CSA compared with the control CSA (33°) for a range of motion between 6° to 61° of thoracohumeral abduction with the largest differences in instability observed between 33° and 37° of elevation. In this range, SSP force had to be increased by 13–33% (15–23 N) to stabilize the arm in space. Our results support the concept that a high CSA can induce SSP overload particularly at low degrees of active abduction.


Journal of Orthopaedic Surgery and Research | 2009

Biomechanical testing of a polymer-based biomaterial for the restoration of spinal stability after nucleotomy.

Aldemar Andres Hegewald; Sven Knecht; Daniel Baumgartner; Hans Gerber; Michaela Endres; Christian Kaps; Edgar Stüssi; Claudius Thomé

BackgroundSurgery for disc herniations can be complicated by two major problems: painful degeneration of the spinal segment and re-herniation. Therefore, we examined an absorbable poly-glycolic acid (PGA) biomaterial, which was lyophilized with hyaluronic acid (HA), for its utility to (a) re-establish spinal stability and to (b) seal annulus fibrosus defects. The biomechanical properties range of motion (ROM), neutral zone (NZ) and a potential annulus sealing capacity were investigated.MethodsSeven bovine, lumbar spinal units were tested in vitro for ROM and NZ in three consecutive stages: (a) intact, (b) following nucleotomy and (c) after insertion of a PGA/HA nucleus-implant. For biomechanical testing, spinal units were mounted on a loading-simulator for spines. In three cycles, axial loading was applied in an excentric mode with 0.5 Nm steps until an applied moment of ± 7.5 Nm was achieved in flexion/extension. ROM and NZ were assessed. These tests were performed without and with annulus sealing by sewing a PGA/HA annulus-implant into the annulus defect.ResultsSpinal stability was significantly impaired after nucleotomy (p < 0.001). Intradiscal implantation of a PGA-HA nucleus-implant, however, restored spinal stability (p < 0.003). There was no statistical difference between the stability provided by the nucleus-implant and the intact stage regarding flexion/extension movements (p = 0.209). During the testing sequences, herniation of biomaterial through the annulus defect into the spinal canal regularly occurred, resulting in compression of neural elements. Sewing a PGA/HA annulus-implant into the annulus defect, however, effectively prevented herniation.ConclusionPGA/HA biomaterial seems to be well suited for cell-free and cell-based regenerative treatment strategies in spinal surgery. Its abilities to restore spinal stability and potentially close annulus defects open up new vistas for regenerative approaches to treat intervertebral disc degeneration and for preventing implant herniation.


Clinical Biomechanics | 2016

Inclination-dependent changes of the critical shoulder angle significantly influence superior glenohumeral joint stability

Beat K. Moor; Roman Kuster; Georg Osterhoff; Daniel Baumgartner; Clément M. L. Werner; Matthias A. Zumstein; Samy Bouaicha

BACKGROUND The critical shoulder angle combines the acromion index and glenoid inclination and has potential to discriminate between shoulders at risk for rotator cuff tear or osteoarthritis and those that are asymptomatic. However, its biomechanics, and particularly the role of the glenoid inclination, are not yet fully understood. METHODS A shoulder simulator was used to analyze the independent influence of glenoid inclination during abduction from 0 to 60°. Spindle motors transferred tension forces by a cable-pulley on human cadaveric humeri. A six-degree-of-freedom force transducer was mounted directly behind the polyethylene glenoid to measure shear and compressive joint reaction force and calculate the instability ratio (ratio of shear and compressive joint reaction force) with the different force ratios of the deltoid and supraspinatus muscles (2:1 and 1:1). A stepwise change in the inclination by 5° increments allowed simulation of a critical shoulder angle range of 20° to 45°. FINDINGS Tilting the glenoid to cranial (increasing the critical shoulder angle) increases the shear joint reaction force and therefore the instability ratio. A balanced force ratio (1:1) between the deltoid and the supraspinatus allowed larger critical shoulder angles before cranial subluxation occurred than did the deltoid-dominant ratio (2:1). INTERPRETATION Glenoid inclination-dependent changes of the critical shoulder angle have a significant impact on superior glenohumeral joint stability. The increased compensatory activity of the rotator cuff to keep the humeral head centered may lead to mechanical overload and could explain the clinically observed association between large angles and degenerative rotator cuff tears.


The Scientific World Journal | 2012

The Spinal Curvature of Three Different Sitting Positions Analysed in an Open MRI Scanner

Daniel Baumgartner; Roland Zemp; Renate List; Mirjam Stoop; J. Naxera; Jean Pierre Elsig; Silvio Lorenzetti

Sitting is the most frequently performed posture of everyday life. Biomechanical interactions with office chairs have therefore a long-term effect on our musculoskeletal system and ultimately on our health and wellbeing. This paper highlights the kinematic effect of office chairs on the spinal column and its single segments. Novel chair concepts with multiple degrees of freedom provide enhanced spinal mobility. The angular changes of the spinal column in the sagittal plane in three different sitting positions (forward inclined, reclined, and upright) for six healthy subjects (aged 23 to 45 years) were determined using an open magnetic resonance imaging (MRI) scanner. An MRI-compatible and commercially available office chair was adapted for use in the scanner. The midpoint coordinates of the vertebral bodies, the wedge angles of the intervertebral discs, and the lumbar lordotic angle were analysed. The mean lordotic angles were 16.0 ± 8.5° (mean ± standard deviation) in a forward inclined position, 24.7 ± 8.3° in an upright position, and 28.7 ± 8.1° in a reclined position. All segments from T10-T11 to L5-S1 were involved in movement during positional changes, whereas the range of motion in the lower lumbar segments was increased in comparison to the upper segments.


Journal of Orthopaedic Surgery and Research | 2011

Review of fixation techniques for the four-part fractured proximal humerus in hemiarthroplasty

Daniel Baumgartner; Betsy M Nolan; Robert Mathys; Silvio Lorenzetti; Edgar Stüssi

IntroductionThe clinical outcome of hemiarthroplasty for proximal humeral fractures is not satisfactory. Secondary fragment dislocation may prevent bone integration; the primary stability by a fixation technique is therefore needed to accomplish tuberosity healing. Present technical comparison of surgical fixation techniques reveals the state-of-the-art approach and highlights promising techniques for enhanced stability.MethodA classification of available fixation techniques for three- and four part fractures was done. The placement of sutures and cables was described on the basis of anatomical landmarks such as the rotator cuff tendon insertions, the bicipital groove and the surgical neck. Groups with similar properties were categorized.ResultsMaterials used for fragment fixation include heavy braided sutures and/or metallic cables, which are passed through drilling holes in the bone fragments. The classification resulted in four distinct groups: A: both tuberosities and shaft are fixed together by one suture, B: single tuberosities are independently connected to the shaft and among each other, C: metallic cables are used in addition to the sutures and D: the fragments are connected by short stitches, close to the fragment borderlines.ConclusionsA plurality of techniques for the reconstruction of a fractured proximal humerus is found. The categorisation into similar strategies provides a broad overview of present techniques and supports a further development of optimized techniques. Prospective studies are necessary to correlate the technique with the clinical outcome.


Journal of Orthopaedic Research | 2016

Glenohumeral joint reaction forces increase with critical shoulder angles representative of osteoarthritis-A biomechanical analysis.

Arnd F. Viehöfer; Jess G. Snedeker; Daniel Baumgartner; Christian Gerber

Osteoarthritis (OA) of the glenohumeral joint constitutes the most frequent indication for nontraumatic shoulder joint replacement. Recently, a small critical shoulder angle (CSA) was found to be associated with a high prevalence of OA. This study aims to verify the hypothesis that a small CSA leads to higher glenohumeral joint reaction forces during activities of daily living than a normal CSA. A shoulder simulator with simulated deltoid (DLT), supraspinatus (SSP), infraspinatus/teres minor (ISP/TM), and subscapularis (SSC) musculotendinous units was constructed. The DLT wrapping on the humerus was simulated using a pulley that could be horizontally adjusted to simulate the 28° CSA found in OA or the 33° CSA found in disease‐free shoulders. Over a range of motion between 6° and 82° of thoracohumeral abduction joint forces were measured using a six‐axis load cell. An OA‐associated CSA yielded higher net joint reaction forces than a normal CSA over the entire range of motion. The maximum difference of 26.4 N (8.5%) was found at 55° of thoracohumeral abduction. Our model thus suggests that a CSA typical for OA predisposes the glenohumeral joint to higher joint reaction forces and could plausibly play a role in joint overloading and development of OA.


Medical & Biological Engineering & Computing | 2009

Refixation stability in shoulder hemiarthroplasty in case of four-part proximal humeral fracture.

Daniel Baumgartner; Silvio Lorenzetti; Robert Mathys; Beat Gasser; Edgar Stüssi

Primary stability of refixated fractures in case of shoulder hemiarthroplasty is a prerequisite to restore physiological glenohumeral joint function. Clinical observations often show a secondary dislocation and subsequent resorption of the bony anchor points like the greater and lesser tuberosity at the rotator cuff tendons. This failed integration leads to impaired glenohumeral load transmission and subsequent reduction of mobility. As a consequence, the optimisation of refixation methods is crucial for a better clinical outcome. To prove the stability of refixation techniques, a Finite Element fracture model was built. Resulting stresses at the bone surface and fragment migration relative to the prosthesis shaft were studied. The results of the calculations show that the isolated tuberosities show unstressed bone regions compared to the intact model. This circumstance may explain the clinically detected bone resorption due to the absence of mechanical stimuli. Furthermore, a cable guidance through lateral holes in the middle part of the proximal prosthesis results in a lower fragment displacement than a circumferential fixation method surrounding the entire proximal bone.


Ergonomics | 2018

Active sitting with backrest support: Is it feasible?

Roman Peter Kuster; Christoph Bauer; Lukas Gossweiler; Daniel Baumgartner

Abstract Ergonomics science recommends office chairs that promote active sitting to reduce sitting related complaints. Since current office chairs do not fulfill this recommendation, a new chair was developed by inverting an existing dynamic chair principle. This study compares active sitting on the inverted chair during a simulated computer-based office task to two existing dynamic office chairs (n = 8). Upper body stability was analysed using Friedman ANOVA (p = .01). In addition, participants completed a questionnaire to rate their comfort and activity after half a working day. The inverted chair allowed the participants to perform a substantial range of lateral spine flexion (11.5°) with the most stable upper body posture (≤11 mm, ≤2°, p ≤ .01). The results of this study suggest that the inverted chair supports active sitting with backrest support during computer-based office work. However, according to comfort and activity ratings, results should be verified in a future field study with 24 participants. Practitioner Summary: This experimental laboratory study analyses the feasibility of active sitting with a backrest support during common office work on a new type of dynamic office chair. The results demonstrate that active sitting with a backrest support is feasible on the new but limited on existing chairs.


Medical & Biological Engineering & Computing | 2014

Towards the development of a novel experimental shoulder simulator with rotating scapula and individually controlled muscle forces simulating the rotator cuff.

Daniel Baumgartner; Daniel Tomas; Lukas Gossweiler; Walter Siegl; Georg Osterhoff; Bernd Heinlein

Collaboration


Dive into the Daniel Baumgartner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge