Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Bryant is active.

Publication


Featured researches published by Daniel Bryant.


Energy and Environmental Science | 2016

Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells

Daniel Bryant; Nicholas Aristidou; Sebastian Pont; Irene Sanchez-Molina; Thana Chotchunangatchaval; Scot Wheeler; James R. Durrant; Saif A. Haque

Here, we demonstrate that light and oxygen-induced degradation is the main reason for the low operational stability of methylammonium lead triiodide (MeNH3PbI3) perovskite solar cells exposed to ambient conditions. When exposed to both light and dry air, unencapsulated MeNH3PbI3 solar cells rapidly degrade on timescales of minutes to a few hours. This rapid degradation is also observed under electrically bias driven current flow in the dark in the presence of O2. In contrast, significantly slower degradation is observed when the MeNH3PbI3 devices are exposed to moisture alone (e.g. 85% relative humidity in N2). We show that this light and oxygen induced degradation can be slowed down by the use of interlayers that are able to remove electrons from the perovskite film before they can react with oxygen to form O2−. These observations demonstrate that the operational stability of electronic and optoelectronic devices that exploit the electron transporting properties of MeNH3PbI3 will be critically dependent upon the use of suitable barrier layers and device configurations to mitigate the oxygen sensitivity of this remarkable material.


Nature Communications | 2016

Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis

Philip Calado; Andrew M. Telford; Daniel Bryant; Xiaoe Li; Jenny Nelson; B. C. Regan; Piers R. F. Barnes

Ion migration has been proposed as a possible cause of photovoltaic current–voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis. Transient optoelectronic measurements combined with device simulations indicate that electric-field screening, consistent with ion migration, is similar in both high and low hysteresis CH3NH3PbI3 cells. Simulation of the photovoltage and photocurrent transients shows that hysteresis requires the combination of both mobile ionic charge and recombination near the perovskite-contact interfaces. Passivating contact recombination results in higher photogenerated charge concentrations at forward bias which screen the ionic charge, reducing hysteresis.


Advanced Materials | 2014

A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells

Daniel Bryant; Peter Greenwood; Joel Troughton; Maarten Wijdekop; Mathew Carnie; Matthew L. Davies; Konrad Wojciechowski; Henry J. Snaith; Trystan Watson; David Worsley

A self-adhesive laminate solar-cell electrode is presented based on a metal grid embedded in a polymer film (x-y conduction) and set in contact with the active layer using a pressure-sensitive adhesive containing a very low quantity (1.8%) of organic conductor, which self-organizes to provide z conduction to the grid. This ITO-free material performs in an identical fashion to evaporated gold in high-efficiency perovskite solar cells.


Journal of Physical Chemistry Letters | 2015

Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite

Giles E. Eperon; Daniel Bryant; Joel Troughton; Samuel D. Stranks; Michael B. Johnston; Trystan Watson; David Worsley; Henry J. Snaith

Efficient, neutral-colored semitransparent solar cells are of commercial interest for incorporation into the windows and surfaces of buildings and automobiles. Here, we report on semitransparent perovskite solar cells that are both efficient and neutral-colored, even in full working devices. Using the microstructured architecture previously developed, we achieve higher efficiencies by replacing methylammonium lead iodide perovskite with formamidinium lead iodide. Current-voltage hysteresis is also much reduced. Furthermore, we apply a novel transparent cathode to the devices, enabling us to fabricate neutral-colored semitransparent full solar cells for the first time. Such devices demonstrate over 5% power conversion efficiency for average visible transparencies of almost 30%, retaining impressive color-neutrality. This makes these devices the best-performing single-junction neutral-colored semitransparent solar cells to date. These microstructured perovskite solar cells are shown to have a significant advantage over silicon solar cells in terms of performance at high incident angles of sunlight, making them ideal for building integration.


Nanoscale | 2016

Experimental and theoretical optical properties of methylammonium lead halide perovskites

Aurélien M. A. Leguy; Pooya Azarhoosh; M. Isabel Alonso; Mariano Campoy-Quiles; Oliver J. Weber; Jizhong Yao; Daniel Bryant; Mark T. Weller; Jenny Nelson; Aron Walsh; Mark van Schilfgaarde; Piers R. F. Barnes

The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).


Journal of Materials Chemistry | 2015

Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates

Joel Troughton; Daniel Bryant; Konrad Wojciechowski; Matthew J. Carnie; Henry J. Snaith; David Worsley; Trystan Watson

Flexible perovskite solar cells with power conversion efficiencies of up to 10.3% have been prepared using titanium foil as an electrode substrate. Our method uses an indium-free transparent counter electrode which allows device performance to remain high despite repeated bending, making it suitable for roll-to-roll processing.


Journal of Materials Chemistry | 2015

Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2

Flannan T. F. O'Mahony; Yong Hui Lee; Cameron Jellett; Stoichko Dmitrov; Daniel Bryant; James R. Durrant; Brian C. O'Regan; Michael Graetzel; Mohammad Khaja Nazeeruddin; Saif A. Haque

Impressive hybrid photovoltaic device performances have been realised with the methylammonium lead triiodide (MAPbI3) perovskite absorber in a wide range of device architectures. However, the question as to which of these systems represents the most commercially viable long-term prospect is yet to be answered conclusively. Here, we report on the photoinduced charge transfer processes in MAPbI3 based films measured under inert and ambient conditions. When exposed to ambient conditions, the coated mesoporous Al2O3 and bilayer systems show a rapid and significant degradation in the yield of long-lived charge separation. This process, which does not affect sensitized-mesoporous TiO2 films, is only found to occur when both light and oxygen are present. These observations indicate that the presence of a mesostructured TiO2 electron acceptor to rapidly extract the photoexcited electron from the perovskite sensitizer may be crucial for fundamental photovoltaic stability and significantly increases innate tolerance to environmental conditions. This work highlights a significant advantage of retaining mesoscale morphological control in the design of perovskite photovoltaics.


International Journal of Photoenergy | 2012

Photocatalytic Oxidation of Triiodide in UVA-Exposed Dye-Sensitized Solar Cells

Matthew J. Carnie; Daniel Bryant; Trystan Watson; David Worsley

UVA irradiation of glass mounted dye-sensitized solar cells without UV filtration causes failure within 400 hours of light exposure. The failure mode is shown to relate to consumption of I3−, which is directly related to TiO2 photo-catalysis. The onset of failure is easily determined from electrochemical impedance data where the recombination resistance of the TiO2/electrolyte back reaction drops markedly prior to the onset of degradation. At the point of complete cell failure this impedance value then dramatically increases as there is no longer an interfacial reaction possible between the TiO2 and the I3− depleted electrolyte. Device failure is most rapid for cells under electrical load indicating that the degradation of the electrolyte is related to photogenerated hole production by excitation of the TiO2. Once depleted by UV exposure, the I3− can be regenerated by simple application of a reverse bias which can restore severely UV degraded devices to near original working conditions.


Journal of Materials Chemistry | 2017

Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells

Sebastian Pont; Daniel Bryant; Chieh-Ting Lin; Nicholas Aristidou; Scot Wheeler; Xuerui Ma; Robert Godin; Saif A. Haque; James R. Durrant

The rapid development of organic–inorganic lead halide perovskites has resulted in high efficiency photovoltaic devices. However the susceptibility of these devices to degradation under environmental stress has so far hindered commercial development, requiring for example expensive device encapsulation. Herein, we have investigated the stability of CH3NH3Pb(I1−xBrx)3 [x = 0–1] thin films and solar cells under controlled humidity, light, and oxygen conditions. We show that higher bromide ratios increase tolerance to moisture, with x = 1 thin films being stable to 120 h of moisture stress. Under light and dry air, partial bromide (x < 1) substitution does not enhance film stability significantly, with the corresponding solar cells degrading within two hours. In contrast, CH3NH3PbBr3 films show excellent stability, with device stability being limited by the organic interlayer. For these x = 1 films, we show that charge carriers are quenched in the presence of oxygen and form superoxide; however in contrast to perovskites containing iodide, this superoxide does not degrade the crystal. Our observations show that iodide limits the oxygen and light stability of CH3NH3Pb(I1−xBrx)3 perovskites, but that CH3NH3PbBr3 provides an opportunity to develop inherently stable high voltage photovoltaic devices and 4-terminal tandem solar cells.


Chemistry of Materials | 2018

The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes

Alexander Giovannitti; Iuliana P. Maria; David Hanifi; Mary J. Donahue; Daniel Bryant; Katrina J. Barth; Beatrice E. Makdah; Achilleas Savva; Davide Moia; Matyáš Zetek; Piers R. F. Barnes; Obadiah G. Reid; Sahika Inal; Garry Rumbles; George G. Malliaras; Jenny Nelson; Jonathan Rivnay; Iain McCulloch

We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.

Collaboration


Dive into the Daniel Bryant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny Nelson

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Scot Wheeler

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Iain McCulloch

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge