Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel C. Anthony is active.

Publication


Featured researches published by Daniel C. Anthony.


Journal of Clinical Investigation | 2001

Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis.

Martin Kolb; Peter J. Margetts; Daniel C. Anthony; Fernando Pitossi; Jack Gauldie

IL-1beta is one of a family of proinflammatory cytokines thought to be involved in many acute and chronic diseases. Although it is considered to participate in wound repair, no major role has been attributed to IL-1beta in tissue fibrosis. We used adenoviral gene transfer to transiently overexpress IL-1beta in rat lungs after intratracheal administration. The high expression of IL-1beta in the first week after injection was accompanied by local increase of the proinflammatory cytokines IL-6 and TNF-alpha and a vigorous acute inflammatory tissue response with evidence of tissue injury. The profibrotic cytokines PDGF and TGF-beta1 were increased in lung fluid samples 1 week after peak expression of IL-1beta. Although PDGF returned to baseline in the third week, TGF-beta1 showed increased concentrations in bronchoalveolar lavage fluid for up to 60 days. This was associated with severe progressive tissue fibrosis in the lung, as shown by the presence of myofibroblasts, fibroblast foci, and significant extracellular accumulations of collagen and fibronectin. These data directly demonstrate how acute tissue injury in the lung, initiated by a highly proinflammatory cytokine, IL-1beta, converts to progressive fibrotic changes. IL-1beta should be considered a valid target for therapeutic intervention in diseases associated with fibrosis and tissue remodeling.


Neuroscience | 1998

Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo

S J Bolton; Daniel C. Anthony; V.H. Perry

The tight junctions found between cerebral vascular endothelial cells form the basis of the blood-brain barrier. Breakdown of the blood-brain barrier is a feature of a variety of CNS pathologies that are characterized by extensive leucocyte recruitment, such as multiple sclerosis and stroke. The molecular mechanisms associated with opening of the blood-brain barrier and leucocyte recruitment in vivo are currently poorly understood. We have used an in vivo rat model to investigate the molecular response of the CNS endothelium to neutrophil adhesion and migration. Injection of interleukin-1 beta into the striatum of juvenile brains results in a neutrophil-dependent increase in vessel permeability at 4 h. Only a subset of blood vessels were associated with neutrophil recruitment. These particular vessels displayed an increase in phosphotyrosine staining, loss of the tight junctional proteins, occludin and zonula occludens-1, and apparent redistribution of the adherens junction protein vinculin. Examination of these vessels under the electron microscope indicated that the cell-cell adhesions in such vessels are morphologically different from normal junctions. This study provides the first direct evidence in vivo that leucocyte recruitment can trigger signal transduction cascades leading to junctional disorganization and blood-brain barrier breakdown. Our results have established an endothelial cell molecular profile associated with leucocyte-induced blood-brain barrier breakdown in vivo, and the relevance of different in vitro cell culture models may now be viewed more objectively.


Journal of Neuroimmunology | 1997

Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview

S Chandler; Karen Miller; John M. Clements; J Lury; D Corkill; Daniel C. Anthony; S.E Adams; Andrew J. H. Gearing

The matrix metalloproteinases (MMPs) are a family of at least 14 zinc-dependent enzymes which are known to degrade the protein components of extracellular matrix. In addition, MMPs and related enzymes can also process a number of cell surface cytokines, receptors, and other soluble proteins. In particular we have shown that the release of the pro-inflammatory cytokine, tumor necrosis factor-alpha, from its membrane-bound precursor is an MMP-dependent process. MMPs are expressed by the inflammatory cells which are associated with CNS lesions in animal models of multiple sclerosis (MS) and in tissue from patients with the disease. MMP expression will contribute to the tissue destruction and inflammation in MS. Drugs which inhibit MMP activity are effective in animal models of MS and may prove to be useful therapies in the clinic.


Neuropathology and Applied Neurobiology | 1997

Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke.

Daniel C. Anthony; B. Ferguson; M.K. Matyzak; Karen Miller; Margaret M. Esiri; V H Perry

D.C. Anthony, B. Ferguson, M.K. Matyzak, K.M. Miller, M.M. Esiri and V.H. Perry (1997) Neuropathology and Applied Neurobiology23, 406–415


Nature | 2007

Expanding the diversity of chemical protein modification allows post-translational mimicry

S I van Kasteren; Holger B. Kramer; H H Jensen; S J Campbell; J Kirkpatrick; Neil J. Oldham; Daniel C. Anthony; Benjamin G. Davis

One of the most important current scientific paradoxes is the economy with which nature uses genes. In all higher animals studied, we have found many fewer genes than we would have previously expected. The functional outputs of the eventual products of genes seem to be far more complex than the more restricted blueprint. In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). These alterations of amino-acid side chains lead to higher structural and functional protein diversity and are, therefore, a leading contender for an explanation for this seeming incongruity. Natural protein production methods typically produce PTM mixtures within which function is difficult to dissect or control. Until now it has not been possible to access pure mimics of complex PTMs. Here we report a chemical tagging approach that enables the attachment of multiple modifications to bacterially expressed (bare) protein scaffolds: this approach allows reconstitution of functionally effective mimics of higher organism PTMs. By attaching appropriate modifications at suitable distances in the widely-used LacZ reporter enzyme scaffold, we created protein probes that included sensitive systems for detection of mammalian brain inflammation and disease. Through target synthesis of the desired modification, chemistry provides a structural precision and an ability to retool with a chosen PTM in a manner not available to other approaches. In this way, combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein–PTM interactions. We therefore anticipate that this ability to build model systems will allow some of this gene product complexity to be dissected, with the aim of eventually being able to completely duplicate the patterns of a particular protein’s PTMs from an in vivo assay into an in vitro system.


Nature Medicine | 2007

In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide

Martina A. McAteer; Nicola R. Sibson; C von Zur Muhlen; Jürgen E. Schneider; A S Lowe; N Warrick; Keith M. Channon; Daniel C. Anthony; Robin P. Choudhury

Multiple sclerosis is a disease of the central nervous system that is associated with leukocyte recruitment and subsequent inflammation, demyelination and axonal loss. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and its ligand, α4β1 integrin, are key mediators of leukocyte recruitment, and selective inhibitors that bind to the α4 subunit of α4β1 substantially reduce clinical relapse in multiple sclerosis. Urgently needed is a molecular imaging technique to accelerate diagnosis, to quantify disease activity and to guide specific therapy. Here we report in vivo detection of VCAM-1 in acute brain inflammation, by magnetic resonance imaging in a mouse model, at a time when pathology is otherwise undetectable. Antibody-conjugated microparticles carrying a large amount of iron oxide provide potent, quantifiable contrast effects that delineate the architecture of activated cerebral blood vessels. Their rapid clearance from blood results in minimal background contrast. This technology is adaptable to monitor the expression of endovascular molecules in vivo in various pathologies.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease

S I van Kasteren; S J Campbell; Sébastien Serres; Daniel C. Anthony; Nicola R. Sibson; Benjamin G. Davis

Initial recruitment of leukocytes in inflammation associated with diseases such as multiple sclerosis (MS), ischemic stroke, and HIV-related dementia, takes place across intact, but activated brain endothelium. It is therefore undetectable to symptom-based diagnoses and cannot be observed by conventional imaging techniques, which rely on increased permeability of the blood–brain barrier (BBB) in later stages of disease. Specific visualization of the early-activated cerebral endothelium would provide a powerful tool for the presymptomatic diagnosis of brain disease and evaluation of new therapies. Here, we present the design, construction and in vivo application of carbohydrate-functionalized nanoparticles that allow direct detection of endothelial markers E-/P-selectin (CD62E/CD62P) in acute inflammation. These first examples of MRI-visible glyconanoparticles display multiple copies of the natural complex glycan ligand of selectins. Their resulting sensitivity and binding selectivity has allowed acute detection of disease in mammals with beneficial implications for treatment of an expanding patient population suffering from neurological disease.


Journal of Neuroimmunology | 1998

Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS

Daniel C. Anthony; Karen Miller; S Fearn; Townsend M; Ghislain Opdenakker; Graham Wells; John M. Clements; S Chandler; Andrew J. H. Gearing; V.H. Perry

In an experimentally-induced DTH model of MS, we examined mRNA and protein expression of a range of MMPs and of TNFalpha to establish the contribution that individual MMPs might make to the pathogenesis. In control rat brain, mRNA for all of the MMPs examined was detectable. However, by immunohistochemistry, only MMP-2 could be detected. In the DTH lesions, significant increases in the level of mRNA expression were observed for MMP-7, MMP-8, MMP-12, and TNFalpha. Where expression of MMP mRNA was increased, there was a corresponding increase in protein expression detected by immunohistochemistry. To determine whether the upregulated MMPs could invoke destructive events in the CNS, highly purified activated MMP-7, MMP-8, and MMP-9 were stereotaxically injected into the brain parenchyma. All provoked recruitment of leukocytes and BBB breakdown. In addition, MMPs 7 and 9 induced loss of myelin staining. In conclusion, specific MMPs are upregulated in DTH lesions; for the most part, measurement of mRNA was a predictor of increased protein expression. From our injections of MMPs, it is clear that the upregulated MMPs in the DTH lesions could participate in the disruption of the BBB, leukocyte recruitment, and tissue damage.


Journal of Neuropathology and Experimental Neurology | 1999

Cytokine-induced Acute Inflammation in the Brain and Spinal Cord

Lisa Schnell; S Fearn; Martin E. Schwab; V.H. Perry; Daniel C. Anthony

Different compartments in the central nervous system mount distinct inflammatory responses. The meninges and choroid plexus respond to pro-inflammatory stimuli in a manner reminiscent of a peripheral inflammatory response, whereas the brain parenchyma is refractory. Trauma-induced lesions in brain and in spinal cord are associated with leukocyte infiltration, blood-brain barrier (BBB) breakdown, and secondary tissue destruction. Unexpectedly, these phenomena are generally more pronounced in the parenchyma of the spinal cord than in the parenchyma of the brain. To investigate whether these differences between brain and spinal cord can be attributed, at least in part, to differing sensitivities to proinflammatory cytokines, we stereotactically injected recombinant rat (rr) TNFalpha or rrIL-1beta into the striatum or the spinal cord of Wistar rats. In the brain, the injection of rrTNFalpha failed to evoke BBB breakdown or leukocyte recruitment, whereas in the spinal cord injection of TNFalpha resulted in marked BBB breakdown and leukocyte recruitment. Similarly, the injection of rrIL-1beta into the brain parenchyma failed to induce BBB breakdown and gave rise to only minimal neutrophil recruitment, whereas the injection of rrIL-1beta into the spinal cord induced significant BBB breakdown and recruitment of neutrophils and lymphocytes. Thus, using a minimally invasive injection technique, equivalent in both circumstances, we have shown that there are marked differences in the inflammatory response between the brain parenchyma and spinal cord parenchyma. This observation has important implications for the treatment of spinal cord injuries.


American Journal of Pathology | 2004

Reversible Demyelination, Blood-Brain Barrier Breakdown, and Pronounced Neutrophil Recruitment Induced by Chronic IL-1 Expression in the Brain

Carina Ferrari; Amaicha Mara Depino; F Prada; N Muraro; Sandra J. Campbell; Osvaldo L. Podhajcer; V.H. Perry; Daniel C. Anthony; Fernando Pitossi

Interleukin-1beta (IL-1) expression is associated with a spectrum of neuroinflammatory processes related to chronic neurodegenerative diseases. The single-bolus microinjection of IL-1 into the central nervous system (CNS) parenchyma gives rise to delayed and localized neutrophil recruitment, transient blood-brain barrier (BBB) breakdown, but no overt damage to CNS integrity. However, acute microinjections of IL-1 do not mimic the chronic IL-1 expression, which is a feature of many CNS diseases. To investigate the response of the CNS to chronic IL-1 expression, we injected a recombinant adenovirus expressing IL-1 into the striatum. At the peak of IL-1 expression (days 8 and 14 post-injection), there was a marked recruitment of neutrophils, vasodilatation, and breakdown of the BBB. Microglia and astrocyte activation was evident during the first 14 days post-injection. At days 8 and 14, extensive demyelination was observed but the number of neurons was not affected by any treatment. Finally, at 30 days, signs of inflammation were no longer present, there was evidence of tissue reorganization, the BBB was intact, and the process of remyelination was noticeable. In summary, our data show that chronic expression of IL-1, in contrast to its acute delivery, can reversibly damage CNS integrity and implicates this cytokine or downstream components as major mediators of demyelination in chronic inflammatory and demyelinating diseases.

Collaboration


Dive into the Daniel C. Anthony's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V.H. Perry

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S J Campbell

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge