Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel C. Morris is active.

Publication


Featured researches published by Daniel C. Morris.


Journal of Cerebral Blood Flow and Metabolism | 2002

Correlation of VEGF and Angiopoietin Expression with Disruption of Blood–Brain Barrier and Angiogenesis after Focal Cerebral Ischemia:

Zheng Gang Zhang; Li Zhang; Wayne Tsang; Hamid Soltanian-Zadeh; Daniel C. Morris; Ruilan Zhang; Anton Goussev; Cecylia Powers; Thomas Yeich; Michael Chopp

In an effort to elucidate the molecular mechanisms underlying cerebral vascular alteration after stroke, the authors measured the spatial and temporal profiles of blood–brain barrier (BBB) leakage, angiogenesis, vascular endothelial growth factor (VEGF), associated receptors, and angiopoietins and receptors after embolic stroke in the rat. Two to four hours after onset of ischemia, VEGF mRNA increased, whereas angiopoietin 1 (Ang 1) mRNA decreased. Three-dimensional immunofluorescent analysis revealed spatial coincidence between increases of VEGF immunoreactivity and BBB leakage in the ischemic core. Two to 28 days after the onset of stroke, increased expression of VEGF/VEGF receptors and Ang/Tie2 was detected at the boundary of the ischemic lesion. Concurrently, enlarged and thin-walled vessels were detected at the boundary of the ischemic lesion, and these vessels developed into smaller vessels via sprouting and intussusception. Three-dimensional quantitative analysis of cerebral vessels at the boundary zone 14 days after ischemia revealed a significant (P < 0.05) increase in numbers of vessels (n = 365) compared with numbers (n = 66) in the homologous tissue of the contralateral hemisphere. Furthermore, capillaries in the penumbra had a significantly smaller diameter (4.8 ± 2.0 μm) than capillaries (5.4 ± 1.5 μm) in the homologous regions of the contralateral hemisphere. Together, these data suggest that acute alteration of VEGF and Ang 1 in the ischemic core may mediate BBB leakage, whereas upregulation of VEGF/VEGF receptors and Ang/Tie2 at the boundary zone may regulate neovascularization in ischemic brain.


Journal of Cerebral Blood Flow and Metabolism | 2008

Coupling of Angiogenesis and Neurogenesis in Cultured Endothelial Cells and Neural Progenitor Cells after Stroke

Hua Teng; Zheng Gang Zhang; Lei Wang; Rui Lan Zhang; Li Zhang; Daniel C. Morris; Sara R. Gregg; Zhenhua Wu; Angela Jiang; Mei Lu; Berislav V. Zlokovic; Michael Chopp

Angiogenesis and neurogenesis are coupled processes. Using a coculture system, we tested the hypothesis that cerebral endothelial cells activated by ischemia enhance neural progenitor cell proliferation and differentiation, while neural progenitor cells isolated from the ischemic subventricular zone promote angiogenesis. Coculture of neural progenitor cells isolated from the subventricular zone of the adult normal rat with cerebral endothelial cells isolated from the stroke boundary substantially increased neural progenitor cell proliferation and neuronal differentiation and reduced astrocytic differentiation. Conditioned medium harvested from the stroke neural progenitor cells promoted capillary tube formation of normal cerebral endothelial cells. Blockage of vascular endothelial growth factor receptor 2 suppressed the effect of the endothelial cells activated by stroke on neurogenesis as well as the effect of the supernatant obtained from stroke neural progenitor cells on angiogenesis. These data suggest that angiogenesis couples to neurogenesis after stroke and vascular endothelial growth factor likely mediates this coupling.


Brain Research | 2001

Dynamic platelet accumulation at the site of the occluded middle cerebral artery and in downstream microvessels is associated with loss of microvascular integrity after embolic middle cerebral artery occlusion

Zheng Gang Zhang; Li Zhang; Wayne Tsang; Anton Goussev; Cecylia Powers; Khang Loon Ho; Daniel C. Morris; Susan S. Smyth; Barry S. Coller; Michael Chopp

Information is lacking regarding dynamic platelet accumulation at the site of the occluded middle cerebral artery (MCA) and the relationship between platelet aggregation in downstream cerebral microvessels and loss of perfusion and vascular integrity of these microvessels. In the present study, we employed a model of embolic MCA occlusion in the rat to simultaneously measure temporal and spatial profiles of platelet accumulation at the site of the embolus occluding the MCA and within downstream cerebral microvessels. We also measured the integrity of microvessels and matrix metalloproteinase (MMP) activity in ischemic brain. Rats (n=36) were subjected to embolic MCA occlusion. Immunohistochemistry was used to detect microvascular integrity, plasminogen activator inhibitor 1 (PAI-1) and the deposition of fibrin. SDS-PAGE zymography was used to measure MMP2 and MMP9 activities. Accumulation of platelets and increases in PAI-1 immunoreactivity at the site of the embolus occluding the MCA were detected 1 h (n=7) and 4 h (n=7) after ischemia, respectively, and numbers of GPIIb/IIIa immunoreactive downstream cerebral microvessels increased significantly (209+/-59; n=7; P<0.05) 4 h after ischemia, suggesting dynamic platelet aggregation. A significant (n=7; P<0.01) diffuse loss of type IV collagen immunoreactivity in microvessels was temporally associated with platelet GPIIb/IIIa immunoreactivity within the vessels. Triple immunostaining revealed that microvessels containing platelet aggregates exhibited loss of type IV collagen immunoreactivity and both intra- and extra-vascular fibrin deposition, suggesting that intravascular platelet aggregation is associated with decreases in the integrity of the microvascular basal lamina and blood-brain barrier leakage. A significant increase (P<0.05) in MMP9 was detected at 4 h (n=3) and 24 h (n=3) after ischemia but levels of MMP2 were not significantly changed in ischemic brain. Our data suggest that dynamic platelet aggregation in ischemic brain may contribute to time-dependent resistance to fibrinolysis. In addition, platelet deposition and increased MMP9 coincided with degradation of type IV collagen and loss of vascular integrity. These data suggest an important role for post-occlusive distal platelet deposition in the pathophysiology of stroke.


Neuroscience | 2003

Migration and differentiation of adult rat subventricular zone progenitor cells transplanted into the adult rat striatum

Ruilan Zhang; Li Zhang; Zhenggang Zhang; Daniel C. Morris; Quan Jiang; Lei Wang; Lijie Zhang; Michael Chopp

Adult brain subventricular zone progenitor cells undergo neurogenesis in the olfactory bulb. We tested the hypothesis that cultured adult subventricular zone progenitor cells migrate and differentiate into neurons when transplanted into the adult striatum. Cells in the adult rat subventricular zone were isolated and cultured for 8 days in medium containing basic fibroblast growth factor. These cells proliferated as assayed by bromodeoxyuridine immunostaining, and the majority of them were neuron-specific class III beta-tubulin (TuJ1) immunoreactive at 8 days of culture. These cultured cells were labeled in vitro with bromodeoxyuridine or with lipophilic dye-coated particles and were transplanted into the adult rat striatum. Twenty-eight days after transplantation, the cells migrated 0.5-1.5 mm from the midline of the graft to the surrounding host striatum. Migration of grafted cells in the host striatum was also detected on magnetic resonance imaging in living rats. Morphological analysis revealed that many of these migrated cells exhibited multibranched processes from the cell soma resembling host medium-size striatal projection neurons. Only a few astrocyte-like cells were detected. Double immunostaining showed that many bromodeoxyuridine immunoreactive cells were microtubule-associated protein 2 or immunoreactive with a mouse monoclonal antibody against neuronal nuclear protein, whereas only a few bromodeoxyuridine immunoreactive cells had glial fibrillary acidic protein immunoreactivity. Morphology of bromodeoxyuridine and microtubule-associated protein 2 immunoreactive cells was similar to those of host microtubule-associated protein 2 immunoreactive cells. These results suggest that transplanted cultured adult subventricular zone progenitor cells can migrate and differentiate in response to guidance cues within the adult striatum.


Journal of Cerebral Blood Flow and Metabolism | 2007

Stroke induces gene profile changes associated with neurogenesis and angiogenesis in adult subventricular zone progenitor cells.

Xian Shuang Liu; Zheng Gang Zhang; Rui Lan Zhang; Sara R Gregg; Daniel C. Morris; Ying Wang; Michael Chopp

Neural progenitor cells in the subventricular zone (SVZ) of the lateral ventricular wall give rise to new neurons throughout rodent life. Ischemic stroke induces angiogenesis and neurogenesis. Using laser capture microdissection (LCM) in combination with microarrays containing approximately 400 known genes associated with stem cells and angiogenesis, we investigated gene profiles of SVZ cells in the adult mouse subjected to middle cerebral artery occlusion. Our data revealed that nonstroke SVZ cells expressed sets of genes that are important for neural progenitor cell proliferation, differentiation, and migration. In addition, stroke SVZ cells expressed many genes involved in neurogenesis during embryonic development but were not detected in nonstroke SVZ cells. Stroke upregulated genes were verified by real-time reverse transcriptase-polymerase chain reaction and immunostaining. These data indicate that adult SVZ cells recapture embryonic molecular signals after stroke and provide insight into the molecular mechanisms, which regulate the biological function of neural progenitor cells in the SVZ of adult rodent brain under physiological and stroke conditions.


Neuroscience | 2009

The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke

Lei Wang; Michael Chopp; Rui Lan Zhang; Li Zhang; Yvonne LeTourneau; Yi fan Feng; Angela Jiang; Daniel C. Morris; Zheng Gang Zhang

Molecular mechanisms by which stroke increases neurogenesis have not been fully investigated. Using neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat subjected to focal cerebral ischemia, we investigated the Notch pathway in regulating proliferation and differentiation of adult neural progenitor cells after stroke. During proliferation of neural progenitor cells, ischemic neural progenitor cells exhibited substantially increased levels of Notch, Notch intracellular domain (NICD), and hairy enhancer of split (Hes) 1, which was associated with a significant increase of proliferating cells. Blockage of the Notch pathway by short interfering ribonucleic acid (siRNA) against Notch or a gamma secretase inhibitor significantly reduced Notch, NICD and Hes1 expression and cell proliferation induced by stroke. During differentiation of neural progenitor cells, Notch and Hes1 expression was downregulated in ischemic neural progenitor cells, which was coincident with a significant increase of neuronal population. Inhibition of the Notch pathway with a gamma secretase inhibitor further substantially increased neurons, but did not alter astrocyte population in ischemic neural progenitor cells. These data suggest that the Notch signaling pathway mediates adult SVZ neural progenitor cell proliferation and differentiation after stroke.


Neuroscience | 2009

NEUROLOGICAL FUNCTIONAL RECOVERY AFTER THYMOSIN BETA4 TREATMENT IN MICE WITH EXPERIMENTAL AUTO ENCEPHALOMYELITIS

Jing Zhang; Zheng Gang Zhang; Daniel C. Morris; Yi Li; Cynthia Roberts; Stanton B. Elias; Michael Chopp

In the present study, we hypothesized that thymosin beta 4 (Tbeta4) is a potential therapy of multiple sclerosis (MS). To test this hypothesis, SJL/J mice (n=21) were subjected to experimental autoimmune encephalomyelitis (EAE), an animal model of MS. EAE mice were treated with saline or Tbeta4 (6 mg/kg, n=10) every 3 days starting on the day of myelin proteolipid protein (PLP) immunization for total five doses. Neurological function, inflammatory infiltration, oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes were measured in the brain of EAE mice. Double immunohistochemical staining was used to detect proliferation and differentiation of OPCs. Tbeta4 was used to treat N20.1 cells (premature oligodendrocyte cell line) in vitro, and proliferation of N20.1 cells was measured by bromodeoxyuridine (BrdU) immunostaining. Tbeta4 treatment improved functional recovery after EAE. Inflammatory infiltrates were significantly reduced in the Tbeta4 treatment group compared to the saline groups (3.6+/-0.3/slide vs 5+/-0.5/slide, P<0.05). NG2(+) OPCs (447.7+/-41.9 vs 195.2+/-31/mm(2) in subventricular zone (SVZ), 75.1+/-4.7 vs 41.7+/-3.2/mm(2) in white matter), CNPase(+) mature oligodendrocytes (267.5+/-10.3 vs 141.4+/-22.9/mm(2)), BrdU(+) with NG2(+) OPCs (32.9+/-3.7 vs 17.9+/-3.6/mm(2)), BrdU(+) with CNPase(+) mature oligodendrocytes (18.2+/-1.7 vs 10.7+/-2.2/mm(2)) were significantly increased in the Tbeta4 treated mice compared to those of saline controls (P<0.05). These data indicate that Tbeta4 treatment improved functional recovery after EAE, possibly, via reducing inflammatory infiltrates, and stimulating oligodendrogenesis.


Journal of Cerebral Blood Flow and Metabolism | 2006

Atorvastatin downregulates tissue plasminogen activator-aggravated genes mediating coagulation and vascular permeability in single cerebral endothelial cells captured by laser microdissection.

Xian Shuang Liu; Zheng Gang Zhang; Li Zhang; Daniel C. Morris; Alissa Kapke; Mei Lu; Michael Chopp

The effects of statins on gene expression of cerebral endothelial cells (ECs) in vivo have not been investigated after stroke. We developed a rapid double immunofluorescent staining protocol with antibodies against von Willebrand factor (a marker for endothelium) and glial fibrillary acidic protein (a marker for astrocytes) for laser capture microdissection to isolate single ECs in brain tissue of the rat. Using this protocol in combination with real-time PCR, we found that stroke significantly increased mRNA levels of protease-activated receptor 1 (PAR-1) and tissue factor (TF) in ECs isolated from ischemic cerebral microvessels compared with nonischemic vessels. Treatment of embolic stroke with recombinant human tissue plasminogen activator (rht-PA) 4 h after stroke further elevated PAR-1 mRNA levels nearly 1000-fold in the core and 500-fold in the boundary above the nonstroke group 30 h after stroke, while TF mRNA levels were elevated approximately 10 fold above the nonstroke group. Furthermore, stroke significantly increased matrix metalloproteinase (MMP) 2 and 9 mRNA levels in the ischemic core and boundary regions 6 and 30 h after stroke. Treatment with rht-PA-upregulated MMP2 expression in the ischemic boundary and core. Atorvastatin completely blocked rht-PA upregulation of the above genes, when atorvastatin in combination with rht-PA was administered 4 h after stroke. Monotherapy of atorvastatin 4 h after stroke did not significantly reduce expression of genes examined in the present study. These data provide evidence that atorvastatin reduces exogenous tPA-aggravated cerebral endothelial genes that mediate thrombosis and blood-brain barrier permeability, which could contribute to the beneficial effects of statins on thrombolytic treatment of acute stroke.


Journal of Neurosurgery | 2011

Treatment of traumatic brain injury with thymosin β4 in rats

Ye Xiong; Asim Mahmood; Yuling Meng; Yanlu Zhang; Zheng Gang Zhang; Daniel C. Morris; Michael Chopp

OBJECT This study was designed to investigate the efficacy of delayed thymosin β(4) (Tβ(4)) treatment of traumatic brain injury (TBI) in rats. METHODS Young adult male Wistar rats were divided into the following groups: 1) sham group (6 rats); 2) TBI + saline group (9 rats); 3) and TBI + Tβ(4) group (10 rats). Traumatic brain injury was induced by controlled cortical impact over the left parietal cortex. Thymosin β(4) (6 mg/kg) or saline was administered intraperitoneally starting at Day 1 and then every 3 days for an additional 4 doses. Neurological function was assessed using a modified neurological severity score (mNSS), foot fault, and Morris water maze tests. Animals were killed 35 days after injury, and brain sections were stained for immunohistochemistry to assess angiogenesis, neurogenesis, and oligodendrogenesis after Tβ(4) treatment. RESULTS Compared with the saline treatment, delayed Tβ(4) treatment did not affect lesion volume but significantly reduced hippocampal cell loss, enhanced angiogenesis and neurogenesis in the injured cortex and hippocampus, increased oligodendrogenesis in the CA3 region, and significantly improved sensorimotor functional recovery and spatial learning. CONCLUSIONS These data for the first time demonstrate that delayed administration of Tβ(4) significantly improves histological and functional outcomes in rats with TBI, indicating that Tβ(4) has considerable therapeutic potential for patients with TBI.


Journal of Neurosurgery | 2012

Neuroprotective and neurorestorative effects of thymosin β4 treatment initiated 6 hours after traumatic brain injury in rats.

Ye Xiong; Yanlu Zhang; Asim Mahmood; Yuling Meng; Zheng Gang Zhang; Daniel C. Morris; Michael Chopp

OBJECT Thymosin β4 (Tβ4) is a regenerative multifunctional peptide. The aim of this study was to test the hypothesis that Tβ4 treatment initiated 6 hours postinjury reduces brain damage and improves functional recovery in rats subjected to traumatic brain injury (TBI). METHODS Traumatic brain injury was induced by controlled cortical impact over the left parietal cortex in young adult male Wistar rats. The rats were randomly divided into the following groups: 1) saline group (n = 7); 2) 6 mg/kg Tβ4 group (n = 8); and 3) 30 mg/kg Tβ4 group (n = 8). Thymosin β4 or saline was administered intraperitoneally starting at 6 hours postinjury and again at 24 and 48 hours. An additional group of 6 animals underwent surgery without TBI (sham-injury group). Sensorimotor function and spatial learning were assessed using the modified Neurological Severity Score and the Morris water maze test, respectively. Animals were euthanized 35 days after injury, and brain sections were processed to assess lesion volume, hippocampal cell loss, cell proliferation, and neurogenesis after Tβ4 treatment. RESULTS Compared with saline administration, Tβ4 treatment initiated 6 hours postinjury significantly improved sensorimotor functional recovery and spatial learning, reduced cortical lesion volume and hippocampal cell loss, and enhanced cell proliferation and neurogenesis in the injured hippocampus. The high dose of Tβ4 showed better beneficial effects compared with the low-dose treatment. CONCLUSIONS Thymosin β4 treatment initiated 6 hours postinjury provides both neuroprotection and neurorestoration after TBI, indicating that Tβ4 has promising therapeutic potential in patients with TBI. These data warrant further investigation of the optimal dose and therapeutic window of Tβ4 treatment for TBI and the associated underlying mechanisms.

Collaboration


Dive into the Daniel C. Morris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Lu

Henry Ford Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge