Daniel C. Peltier
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel C. Peltier.
Journal of Immunology | 2010
Daniel C. Peltier; Allison Simms; Jocelyn R. Farmer; David J. Miller
Innate immune pathways are early defense responses important for the immediate control and eventual clearance of many pathogens, where signaling is initiated via pattern recognition receptor (PRR)-mediated events that occur in a ligand- and cell-type specific manner. Within CNS neurons, innate immune pathways are likely crucial to control pathogens that target these essential yet virtually irreplaceable cells. However, relatively little is known about the induction and regulation of neuronal PRR signaling. In this report, we used human neuronal cell lines and primary rat neuronal cultures to examine PRR expression and function. We found that several innate immune receptor ligands, including Sendai virus, the dsRNA mimetic polyinosinic-polycytidylic acid, and LPS all activated differentiation-dependent neuronal innate immune pathways. Functional genetic analyses revealed that IFN regulatory factor 3-mediated pathways that resulted in IFN-β transcriptional upregulation were activated in cultured human neuronal cells by the PRRs TLR3, MDA5, or RIG-I in a ligand-specific manner. Furthermore, genome-wide transcriptional array and targeted genetic and pharmacologic analyses identified PI3K signaling as crucial for the induction of innate immune pathways in neurons. These results indicate that human neuronal cells possess specific and functional PRR pathways essential for the effective induction of innate immune responses, and suggest that neurons can play an active role in defense against neurotropic pathogens.
The Journal of Infectious Diseases | 2009
Weiping Peng; Daniel C. Peltier; Martha J. Larsen; Paul D. Kirchhoff; Scott D. Larsen; Richard R. Neubig; David J. Miller
Neurotropic alphaviruses such as western, eastern, and Venezuelan equine encephalitis viruses cause serious and potentially fatal central nervous system infections in humans and are high-priority potential bioterrorism agents. There are currently no widely available vaccines or licensed therapies for these virulent pathogens. To identify potential novel antiviral drugs, we developed a cell-based assay with a western equine encephalitis virus replicon that expresses a luciferase reporter gene and screened a small molecule diversity library of 51,028 compounds. We identified and validated a thieno[3,2-b]pyrrole compound with a half maximal inhibitory concentration of <10 micromol/L, a selectivity index>20, and potent activity against live virus in cultured neuronal cells. Furthermore, a structure-activity relationship analysis with 20 related compounds identified several with enhanced activity profiles, including 6 with submicromolar half maximal inhibitory concentrations. In conclusion, we have identified a novel class of promising inhibitors with potent activity against virulent neurotropic alphaviruses.
Journal of Virology | 2013
Daniel C. Peltier; Helen M. Lazear; Jocelyn R. Farmer; Michael S. Diamond; David J. Miller
ABSTRACT Cell-intrinsic innate immune responses mediated by the transcription factor interferon regulatory factor 3 (IRF-3) are often vital for early pathogen control, and effective responses in neurons may be crucial to prevent the irreversible loss of these critical central nervous system cells after infection with neurotropic pathogens. To investigate this hypothesis, we used targeted molecular and genetic approaches with cultured neurons to study cell-intrinsic host defense pathways primarily using the neurotropic alphavirus western equine encephalitis virus (WEEV). We found that WEEV activated IRF-3-mediated neuronal innate immune pathways in a replication-dependent manner, and abrogation of IRF-3 function enhanced virus-mediated injury by WEEV and the unrelated flavivirus St. Louis encephalitis virus. Furthermore, IRF-3-dependent neuronal protection from virus-mediated cytopathology occurred independently of autocrine or paracrine type I interferon activity. Despite being partially controlled by IRF-3-dependent signals, WEEV also disrupted antiviral responses by inhibiting pattern recognition receptor pathways. This antagonist activity was mapped to the WEEV capsid gene, which disrupted signal transduction downstream of IRF-3 activation and was independent of capsid-mediated inhibition of host macromolecular synthesis. Overall, these results indicate that innate immune pathways have important cytoprotective activity in neurons and contribute to limiting injury associated with infection by neurotropic arboviruses.
Biology of Blood and Marrow Transplantation | 2017
Evelyn Nieves; Tomomi Toubai; Daniel C. Peltier; Katherine Oravecz-Wilson; Chen Liu; Hiroya Tamaki; Yaping Sun; Pavan Reddy
Professional antigen-presenting cells (APCs) are important modulators of acute graft-versus-host disease (GVHD). Although dendritic cells (DCs) are the most potent APC subset, other myeloid cells, especially macrophages (MFs) and neutrophils, recently have been shown to play a role in the severity of GVHD. The critical molecular mechanisms that determine the functions of myeloid cells in GVHD are unclear, however. Signal transducer and activator of transcription 3 (STAT3) is a master transcription factor that plays a crucial role in regulating immunity, but its role in MF biology and in acute GVHD remains unknown. To determine the impact of myeloid cell-specific expression of STAT3 on the severity of acute GVHD, we used myeloid cell-specific STAT3-deficient LysM-Cre/STAT3fl/- animals as recipients and donors in well-characterized experimental models of acute GVHD. We found that reduced expression of STAT3 in myeloid cells from the hosts, but not the donors, increased inflammation, increased donor T cell activation, and exacerbated GVHD. Our data demonstrate that STAT3 in host myeloid cells, such as MFs, dampens acute GVHD.
Scientific Reports | 2018
Tomomi Toubai; Corinne Rossi; Isao Tawara; Chen Liu; Cynthia Zajac; Katherine Oravecz-Wilson; Daniel C. Peltier; Yaping Sun; Shin-Rong Wu; Mary Riwes; Israel Henig; Stephanie Kim; Pavan Reddy
Corticosteroids are the first line therapy for acute graft-versus-host disease (GVHD). However, the outcome of steroid refractory GVHD (SR-GVHD) is poor due to a lack of effective treatments. The development of therapies for SR-GVHD is limited by an incomplete understanding of its pathophysiology partly because of the absence of clinically relevant animal models of SR-GVHD. Here we addressed the need for a SR-GVHD animal model by developing both MHC matched multiple minor histocompatibility antigens (miHAs) mismatched and MHC mismatched haploidentical murine models of SR-GVHD. We demonstrate that animals can develop SR-GVHD regardless of whether steroids are initiated early or late post allogeneic bone marrow transplantation (allo-BMT). In general, we observed increased GVHD specific histopathological damage of target organs in SR-GVHD animals relative to steroid responsive animals. Interestingly, we found no significant differences in donor T cell characteristics between steroid refractory and responsive animals suggesting that donor T cell independent mechanisms may play more prominent roles in the pathogenesis of SR-GVHD than was considered previously.
Nature Communications | 2018
Melissa D. Docampo; Mary Riwes; Daniel C. Peltier; Tomomi Toubai; Israel Henig; S. Julia Wu; Stephanie Kim; Austin Taylor; Stuart Brabbs; Chen Liu; Cynthia Zajac; Katherine Oravecz-Wilson; Yaping Sun; Gabriel Núñez; John E. Levine; Marcel R.M. van den Brink; James L.M. Ferrara; Pavan Reddy
Microbiome-derived metabolites influence intestinal homeostasis and regulate graft-versus-host disease (GVHD), but the molecular mechanisms remain unknown. Here we show the metabolite sensor G-protein-coupled receptor 43 (GPR43) is important for attenuation of gastrointestinal GVHD in multiple clinically relevant murine models. GPR43 is critical for the protective effects of short-chain fatty acids (SCFAs), butyrate and propionate. Increased severity of GVHD in the absence of GPR43 is not due to baseline differences in the endogenous microbiota of the hosts. We confirm the ability of microbiome-derived metabolites to reduce GVHD by several methods, including co-housing, antibiotic treatment, and administration of exogenous SCFAs. The GVHD protective effect of SCFAs requires GPR43-mediated ERK phosphorylation and activation of the NLRP3 inflammasome in non-hematopoietic target tissues of the host. These data provide insight into mechanisms of microbial metabolite-mediated protection of target tissues from the damage caused allogeneic T cells.The microbial metabolite sensor GPR43 has been previously shown to be a crucial modulator of immune responses. Here the authors show GPR43 is required for controlling disease pathology severity in the context of experimental models of GVHD.
Frontiers in Immunology | 2018
Daniel C. Peltier; Pavan Reddy
Allogeneic bone marrow transplantation (BMT) is an effective therapy for several malignant and non-malignant disorders. The precise control of allogeneic T cells is critical for successful outcomes after BMT. The mechanisms governing desirable (graft-versus-leukemia) versus undesirable (graft-versus-host disease) allogeneic responses remain incompletely understood. Non-coding RNAs (ncRNA) are controllers of gene expression that fine-tune cellular responses. Multiple microRNAs (miRNAs), a type of ncRNA, have recently been shown to influence allogeneic T cell responses in both murine models and clinically. Here, we review the role of various miRNAs that regulate T cell responses, either positively or negatively, to allo-stimulation and highlight their potential relevance as biomarkers and as therapeutic targets for improving outcomes after allogeneic BMT.
Blood Advances | 2017
Tomomi Toubai; Corinne Rossi; Katherine Oravecz-Wilson; Chen Liu; Cynthia Zajac; Shin-Rong Julia Wu; Yaping Sun; Hiroya Tamaki; Daniel C. Peltier; Mary Riwes; Israel Henig; Stuart Brabbs; Colin S. Duckett; Shaomeng Wang; Pavan Reddy
Inhibitors of apoptosis proteins (IAPs) regulate apoptosis, but little is known about the role of IAPs in the regulation of immunity. Development of IAP inhibition by second mitochondria-derived activator of caspase (SMAC) mimetics is emerging as a novel therapeutic strategy to treat malignancies. We explored the role of IAPs in allogeneic immunity with 2 distinct yet complementary strategies, namely, chemical and genetic approaches, in clinically relevant models of experimental bone marrow transplantation (BMT). The small-molecule pan-IAP inhibitor SMAC mimetic AT-406 aggravated gastrointestinal graft-versus-host disease (GVHD) in multiple models. The role of specific IAPs in various host and donor cellular compartments was explored by utilizing X-linked IAP (XIAP)- and cellular IAP (cIAP)-deficient animals as donors or recipients. Donor T cells from C57BL/6 cIAP1-/- or XIAP-/- animals demonstrated equivalent GVHD severity and allogeneic responses, both in vivo and in vitro, when compared with B6 wild-type (B6-WT) T cells. By contrast, when used as recipient animals, both XIAP-/- and cIAP1-/- animals demonstrated increased mortality from GVHD when compared with B6-WT animals. BM chimera studies revealed that cIAP and XIAP deficiency in host nonhematopoietic target cells, but not in host hematopoietic-derived cells, is critical for exacerbation of GVHD. Intestinal epithelial cells from IAP-deficient animals showed reduced levels of antiapoptotic proteins as well as autophagy-related protein LC3 after allogeneic BMT. Collectively, our data highlight a novel immune cell-independent but target tissue-intrinsic role for IAPs in the regulation of gastrointestinal damage from GVHD.
Virology | 2008
Kathryn M. Castorena; Daniel C. Peltier; Weiping Peng; David J. Miller
Cell Reports | 2017
S. Julia Wu; Yashar S. Niknafs; Stephanie Kim; Katherine Oravecz-Wilson; Cynthia Zajac; Tomomi Toubai; Yaping Sun; Jayendra Prasad; Daniel C. Peltier; Israel Hedig; Nathan Mathewson; Rami Khoriaty; David Ginsburg; Pavan Reddy