Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Cadar is active.

Publication


Featured researches published by Daniel Cadar.


The New England Journal of Medicine | 2014

Emergence of Zaire Ebola Virus Disease in Guinea

Sylvain Baize; Delphine Pannetier; Lisa Oestereich; Toni Rieger; Lamine Koivogui; Barré Soropogui; Mamadou Saliou Sow; Sakoba Keita; Hilde De Clerck; Amanda Tiffany; Gemma Dominguez; Mathieu Loua; Alexis Traoré; Moussa Kolié; Emmanuel Roland Malano; Emmanuel Heleze; Anne Bocquin; Stéphane Mély; Hervé Raoul; Valérie Caro; Daniel Cadar; Martin Gabriel; Meike Pahlmann; Dennis Tappe; Jonas Schmidt-Chanasit; Benido Impouma; Abdoul Karim Diallo; Michel Van Herp; Stephan Günther

In March 2014, the World Health Organization was notified of an outbreak of a communicable disease characterized by fever, severe diarrhea, vomiting, and a high fatality rate in Guinea. Virologic investigation identified Zaire ebolavirus (EBOV) as the causative agent. Full-length genome sequencing and phylogenetic analysis showed that EBOV from Guinea forms a separate clade in relationship to the known EBOV strains from the Democratic Republic of Congo and Gabon. Epidemiologic investigation linked the laboratory-confirmed cases with the presumed first fatality of the outbreak in December 2013. This study demonstrates the emergence of a new EBOV strain in Guinea.


Journal of Clinical Virology | 2015

Zika virus infections imported to Italy: Clinical, immunological and virological findings, and public health implications

Lorenzo Zammarchi; Giulia Stella; Antonia Mantella; Dario Bartolozzi; Dennis Tappe; Stephan Günther; Lisa Oestereich; Daniel Cadar; César Muñoz-Fontela; Alessandro Bartoloni; Jonas Schmidt-Chanasit

We report the first two cases of laboratory confirmed Zika virus (ZIKV) infections imported into Italy from French Polynesia. Both patients presented with low grade fever, malaise, conjunctivitis, myalgia, arthralgia, ankle oedema, and axillary and inguinal lymphadenopathy. One patient showed leukopenia with relative monocytosis and thrombocytopenia. The diagnosis was based on ZIKV seroconversion in both cases and on ZIKV RNA detection in one patient from acute serum sample. Sera from both patients exhibited cross-reactivity with dengue virus antigens. Our immunological analysis demonstrated that recovery from ZIKV infection is associated with restoration of normal numbers of immune cells in the periphery as well as with normal function of antigen-presenting cells. ZIKV is an emerging arbovirus, which has recently spread extensively in tourist destinations on several West Pacific islands. Returning viremic travelers may ignite autochthonous infections in countries like Italy, which are infested by Aedes albopictus, a suitable vector for ZIKV. The role of clinicians is crucial and includes early diagnosis and timely notification of public health authorities in order to quickly implement adequate focal vector control measurements.


The New England Journal of Medicine | 2015

A Variegated Squirrel Bornavirus Associated with Fatal Human Encephalitis

Bernd Hoffmann; Dennis Tappe; Dirk Höper; Christiane Herden; Annemarie Boldt; Christian Mawrin; Olaf Niederstraßer; Tobias Müller; Maria Jenckel; Elisabeth van der Grinten; Christian Lutter; Björn Abendroth; Jens Peter Teifke; Daniel Cadar; Jonas Schmidt-Chanasit; Rainer G. Ulrich; Martin Beer

Between 2011 and 2013, three breeders of variegated squirrels (Sciurus variegatoides) had encephalitis with similar clinical signs and died 2 to 4 months after onset of the clinical symptoms. With the use of a metagenomic approach that incorporated next-generation sequencing and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), the presence of a previously unknown bornavirus was detected in a contact squirrel and in brain samples from the three patients. Phylogenetic analyses showed that this virus, tentatively named variegated squirrel 1 bornavirus (VSBV-1), forms a lineage separate from that of the known bornavirus species. (Funded by the Federal Ministry of Food and Agriculture [Germany] and others.).


Eurosurveillance | 2016

Sexual transmission of Zika virus in Germany, April 2016

Christina Frank; Daniel Cadar; Alexander Schlaphof; Neele Neddersen; Stephan Günther; Jonas Schmidt-Chanasit; Dennis Tappe

Zika virus (ZIKV), an emerging mosquito-borne flavivirus, causes a mild dengue fever-like illness but has recently been associated with neurological disease and severe birth defects. The virus is currently causing a large epidemic in the Americas. Here, we report a male-to-female sexual transmission of ZIKV in Germany in April 2016, following travel to Puerto Rico of the male patient, demonstrated by subsequent seroconversions and molecular identification of identical virus sequences from both patients.


Archives of Virology | 2012

Detection, prevalence and analysis of emerging porcine parvovirus infections

Attila Cságola; Márta Lőrincz; Daniel Cadar; Kata Tombácz; Imre Biksi; Tamás Tuboly

A number of newly identified porcine parvoviruses had been described during the last decade, but the presence and prevalence of these viruses are unknown in Hungary and only partly known for Europe. The present study was conducted to detect and measure the prevalence of these viruses, namely porcine parvovirus (PPV) 2, PPV3, PPV4, porcine bocavirus (PBoV) 1, PBoV2, PBo-likeV and the 6V and 7V parvoviruses. The prevalence of PPV1 and porcine circovirus type 2 (PCV2) was also investigated. Faecal samples, blood serum samples, organ tissues, foetuses and semen were collected from different swine herds in Hungary and tested by polymerase chain reaction methods specific for the different viruses. The results indicated that all of the examined parvoviruses were present in Hungary, hence in Europe. The prevalence was 18.1% for PCV2, 0.5 % for PPV1, 6.4% for PPV2, 9.7% for PPV3, 6.4% for PPV4, 1.5% for PBo-likeV, 4.8% for PBoV1 and PBoV2 and 1.8% for 6V and 7V. Based on the analysis of partial PPV4 and PBo-likeV sequences, these viruses showed a high degree of sequence conservation, whereas PPV3 and the majority of PPV2, PBoV1, PBoV2, 6V and 7V sequences showed higher variability. Possible sites of recombination were also identified between PBoV1 and PBoV2 genomes.


Veterinary Parasitology | 2012

Tick prevention at a crossroad: new and renewed solutions.

Timea Kiss; Daniel Cadar; Marina Spinu

Ticks have major economic impact through diseases they transmit, direct losses due to their detrimental effect and the efforts invested in prevention measures directed against them. Chemical acaricides represent the main line of anti-tick defense in both humans and domestic animals, but increasing concerns regarding development of acaricide resistance, especially in the cattle tick Rhipicephalus microplus, and environmental safety issues indicate the need for other, less aggressive but equally efficient methods. This paper aims to evaluate the potential, the scientific and economical limitations and future research directions regarding different alternative methods of tick control and their use in integrated pest management, with a separate reference to the pet industry. New research data in each field is presented and the economical aspects for each approach are individually emphasized.


Bulletin of The World Health Organization | 2016

Assay optimization for molecular detection of Zika virus

Victor Max Corman; Andrea Rasche; Cécile Baronti; Souhaib Aldabbagh; Daniel Cadar; Chantal Reusken; Suzan D. Pas; Abraham Goorhuis; Janke Schinkel; Richard Molenkamp; Beate M. Kümmerer; Tobias Bleicker; Sebastian Brünink; Monika Eschbach-Bludau; Anna Maria Eis-Hübinger; Marion Koopmans; Jonas Schmidt-Chanasit; Martin P. Grobusch; Xavier de Lamballerie; Christian Drosten; Jan Felix Drexler

Abstract Objective To examine the diagnostic performance of real-time reverse transcription (RT)-polymerase chain reaction (PCR) assays for Zika virus detection. Methods We compared seven published real-time RT–PCR assays and two new assays that we have developed. To determine the analytical sensitivity of each assay, we constructed a synthetic universal control ribonucleic acid (uncRNA) containing all of the assays’ target regions on one RNA strand and spiked human blood or urine with known quantities of African or Asian Zika virus strains. Viral loads in 33 samples from Zika virus-infected patients were determined by using one of the new assays. Findings Oligonucleotides of the published real-time RT–PCR assays, showed up to 10 potential mismatches with the Asian lineage causing the current outbreak, compared with 0 to 4 mismatches for the new assays. The 95% lower detection limit of the seven most sensitive assays ranged from 2.1 to 12.1 uncRNA copies/reaction. Two assays had lower sensitivities of 17.0 and 1373.3 uncRNA copies/reaction and showed a similar sensitivity when using spiked samples. The mean viral loads in samples from Zika virus-infected patients were 5 × 104 RNA copies/mL of blood and 2 × 104 RNA copies/mL of urine. Conclusion We provide reagents and updated protocols for Zika virus detection suitable for the current outbreak strains. Some published assays might be unsuitable for Zika virus detection, due to the limited sensitivity and potential incompatibility with some strains. Viral concentrations in the clinical samples were close to the technical detection limit, suggesting that the use of insensitive assays will cause false-negative results.


Archives of Virology | 2011

Distribution and genetic diversity of porcine hokovirus in wild boars

Daniel Cadar; Attila Cságola; Márta Lőrincz; Kata Tombácz; Marina Spinu; Tamás Tuboly

Porcine hokovirus (PHoV), a newly discovered member of the family Parvoviridae and the proposed genus Hokovirus, is considered phylogenetically distinct from other parvoviruses. Here, we report a comprehensive spatio-temporal study of PHoV infection in Romanian wild boars. The prevalence of PHoV differed significantly in samples from 2006/2007 (22.76%) and 2010/2011 (50.54%), and also increased with age. Sequence analysis of PHoVs from 2006/2007 showed a close relationship to PHoVs from pigs from England and wild boars from Germany, while the PHoVs from 2010/2011 were mostly similar to isolates from Hong Kong. The most variable regions were detected in the NS1 gene and proved to be suitable for analysis of the genetic diversity of the virus. It was observed that PHoVs from older wild boar samples differed from those collected recently. These results suggested that porcine hokovirus could be a newly emerging virus of both domestic and wild pigs with yet unknown implications.


Mbio | 2016

Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa

Dimitri Engel; Hanna Jöst; Michael Wink; Jessica Börstler; Stefan Bosch; Mutien-Marie Garigliany; Artur Jöst; Christina Czajka; Renke Lühken; Ute Ziegler; Martin H. Groschup; Martin Pfeffer; Norbert Becker; Daniel Cadar; Jonas Schmidt-Chanasit

ABSTRACT Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. IMPORTANCE Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused massive bird die-offs, mostly in Europe. There is increasing evidence that USUV appears to be pathogenic for humans, becoming a potential public health problem. The emergence of USUV in Europe allows us to understand how an arbovirus spreads, adapts, and evolves in a naive environment. Thus, understanding the epidemiological and evolutionary processes that contribute to the emergence, maintenance, and further spread of viral diseases is the sine qua non to develop and implement surveillance strategies for their control. In this work, we performed an expansive phylogeographic and evolutionary analysis of USUV using all published sequences and those generated during this study. Subsequently, we described the genetic traits, reconstructed the potential pattern of geographic spread between continents/countries of the identified viral lineages and the drivers of viral migration, and traced the origin of outbreaks and transition events between different hosts. Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused massive bird die-offs, mostly in Europe. There is increasing evidence that USUV appears to be pathogenic for humans, becoming a potential public health problem. The emergence of USUV in Europe allows us to understand how an arbovirus spreads, adapts, and evolves in a naive environment. Thus, understanding the epidemiological and evolutionary processes that contribute to the emergence, maintenance, and further spread of viral diseases is the sine qua non to develop and implement surveillance strategies for their control. In this work, we performed an expansive phylogeographic and evolutionary analysis of USUV using all published sequences and those generated during this study. Subsequently, we described the genetic traits, reconstructed the potential pattern of geographic spread between continents/countries of the identified viral lineages and the drivers of viral migration, and traced the origin of outbreaks and transition events between different hosts.


Emerging Infectious Diseases | 2014

Usutu virus in bats, Germany, 2013.

Daniel Cadar; Norbert Becker; Renata de Mendonça Campos; Jessica Börstler; Hanna Jöst; Jonas Schmidt-Chanasit

To the Editor: Usutu virus (USUV) is an arthropod-borne flavivirus that belongs to the Japanese encephalitis serocomplex (1). USUV circulates between ornithophilic mosquito vectors (mainly Culex spp. mosquitoes) and avian amplification hosts (2). Migratory birds play a key role in the introduction of USUV into new areas (3). USUV has recently been introduced from Africa into Europe, causing epizootics among wild birds and Usutu fever in humans (4–6). The detection and isolation of USUV from different bird and mammalophilic mosquitoes during the epizootic in Germany raise questions regarding the USUV host range (2,3). Bats have been considered natural reservoir hosts of a wide diversity of viruses, including several flaviviruses (7,8). Their ability to fly and their social behavior enable efficient maintenance, spread, and evolution of viruses.

Collaboration


Dive into the Daniel Cadar's collaboration.

Top Co-Authors

Avatar

Jonas Schmidt-Chanasit

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Marina Spinu

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

L. B. Köbölkuti

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Mihaela Niculae

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Tamás Tuboly

Szent István University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Ungvári

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timea Kiss

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Dennis Tappe

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge