Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Carpio is active.

Publication


Featured researches published by Daniel Carpio.


Biology of Blood and Marrow Transplantation | 2008

Systemic Administration of Multipotent Mesenchymal Stromal Cells Reverts Hyperglycemia and Prevents Nephropathy in Type 1 Diabetic Mice

Fernando Ezquer; Marcelo Ezquer; Daniela B. Parrau; Daniel Carpio; Alejandro Yáñez; Paulette Conget

Multipotent mesenchymal stromal cells (MSCs), often labeled mesenchymal stem cells, contribute to tissue regeneration in injured bone and cartilage, as well as in the infarcted heart, brain, and kidney. We hypothesize that MSCs might also contribute to pancreas and kidney regeneration in diabetic individuals. Therefore, in streptozotocin (STZ)-induced type 1 diabetes C57BL/6 mice, we tested whether a single intravenous dose of MSCs led to recovery of pancreatic and renal function and structure. When hyperglycemia, glycosuria, massive beta-pancreatic islets destruction, and mild albuminuria were evident (but still without renal histopathologic changes), mice were randomly separated in 2 groups: 1 received 0.5 x 10(6) MSCs that have been ex vivo expanded (and characterized according to their mesenchymal differentiation potential), and the other group received the vehicle. Within a week, only MSC-treated diabetic mice exhibited significant reduction in their blood glucose levels, reaching nearly euglycemic values a month later. Reversion of hyperglycemia and glycosuria remained for 2 months at least. An increase in morphologically normal beta-pancreatic islets was observed only in MSC-treated diabetic mice. Furthermore, in those animals albuminuria was reduced and glomeruli were histologically normal. On the other side, untreated diabetic mice presented glomerular hyalinosis and mesangial expansion. Thus, MSC administration resulted in beta-pancreatic islets regeneration and prevented renal damage in diabetic animals. Our preclinical results suggest bone marrow-derived MSC transplantation as a cell therapy strategy to treat type 1 diabetes and prevent diabetic nephropathy, its main complication.


Biology of Blood and Marrow Transplantation | 2009

Endovenous Administration of Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells Prevents Renal Failure in Diabetic Mice

Fernando Ezquer; Marcelo Ezquer; Valeska Simon; Fabian Pardo; Alejandro J. Yáñez; Daniel Carpio; Paulette Conget

Twenty-five to 40% of diabetic patients develop diabetic nephropathy, a clinical syndrome that comprises renal failure and increased risk of cardiovascular disease. It represents the major cause of chronic kidney disease and is associated with premature morbimortality of diabetic patients. Multipotent mesenchymal stromal cells (MSC) contribute to the regeneration of several organs, including acutely injured kidney. We sought to evaluate if MSC protect kidney function and structure when endovenously administered to mice with severe diabetes. A month after nonimmunologic diabetes induction by streptozotocin injection, C57BL/6 mice presented hyperglycemia, glycosuria, hypoinsulinemia, massive beta-pancreatic islet destruction, low albuminuria, but not renal histopathologic changes (DM mice). At this stage, one group of animals received the vehicle (untreated) and other group received 2 doses of 0.5 x 10(6) MSC/each (MSC-treated). Untreated DM mice gradually increased urinary albumin excretion and 4 months after diabetes onset, they reached values 15 times higher than normal animals. In contrast, MSC-treated DM mice maintained basal levels of albuminuria. Untreated DM mice had marked glomerular and tubular histopathologic changes (sclerosis, mesangial expansion, tubular dilatation, proteins cylinders, podocytes lost). However, MSC-treated mice showed only slight tubular dilatation. Observed renoprotection was not associated with an improvement in endocrine pancreas function in this animal model, because MSC-treated DM mice remained hyperglycemic and hypoinsulinemic, and maintained few remnant beta-pancreatic islets throughout the study period. To study MSC biodistribution, cells were isolated from isogenic mice that constitutively express GFP (MSC(GFP)) and endovenously administered to DM mice. Although at very low levels, donor cells were found in kidney of DM mice 3 month after transplantation. Presented preclinical results support MSC administration as a cell therapy strategy to prevent chronic renal diseases secondary to diabetes.


Human Molecular Genetics | 2015

Lyso-Gb3 activates Notch1 in human podocytes

Maria Dolores Sanchez-Niño; Daniel Carpio; Ana Belen Sanz; Marta Ruiz-Ortega; Sergio Mezzano; Alberto Ortiz

Podocyte injury is an early feature of Fabry nephropathy, but the molecular mechanisms of podocyte injury are poorly understood. Lyso-Gb3 accumulates in serum in Fabry disease and increases extracellular matrix synthesis in podocytes. We explored the contribution of Notch1 signaling, a mediator of podocyte injury, to lyso-Gb3-elicited responses in cultured human podocytes. At clinically relevant concentrations, lyso-Gb3 activates podocyte Notch1 signaling, resulting in increased active Notch1 and HES1, a canonical Notch transcriptional target. A γ-secretase inhibitor or specific Notch1 small interfering RNA (siRNA) inhibited HES1 upregulation in response to lyso-Gb3. Notch1 siRNA or γ-secretase inhibition also prevented the lyso-Gb3-induced upregulation of Notch1, Notch ligand Jagged1 and chemokine (MCP1, RANTES) expression. Notch siRNA prevented the activation of nuclear factor kappa B (NFκB), and NFκB activation contributed to Notch1-mediated inflammatory responses as the NFκB inhibitor, parthenolide, prevented lyso-Gb3-induced chemokine upregulation. Notch1 also mediates fibrogenic responses in podocytes as Notch siRNA prevented lyso-Gb3 upregulation of fibronectin mRNA. Supporting the clinical relevance of cell culture findings, active Notch1, Jagged1 and HES1 were observed in Fabry kidney biopsies. Lyso-Gb3 elicited similar responses in mouse kidney. In conclusion, lyso-Gb3 promotes Notch1-mediated inflammatory and fibrogenic responses in podocytes that may contribute to Fabry nephropathy.


Journal of Cellular Biochemistry | 2013

Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney

Rodrigo Gatica; Romina Bertinat; Pamela Silva; Daniel Carpio; María José Ramírez; Juan C. Slebe; Rody San Martín; Francisco Nualart; José María Campistol; Carme Caelles; Alejandro J. Yáñez

Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down‐regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease. J. Cell. Biochem. 114: 639–649, 2013.


American Journal of Physiology-renal Physiology | 2015

Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy

Vanessa Marchant; Alejandra Droguett; Graciela Valderrama; M. Eugenia Burgos; Daniel Carpio; Bredford Kerr; Marta Ruiz-Ortega; Jesús Egido; Sergio Mezzano

Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-β1, Col1a1, and α-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy.


PLOS ONE | 2014

Tubular overexpression of gremlin induces renal damage susceptibility in mice.

Alejandra Droguett; Paola Krall; M. Eugenia Burgos; Graciela Valderrama; Daniel Carpio; Leopoldo Ardiles; Raquel Rodriguez-Diez; Bredford Kerr; Katherina Walz; Marta Ruiz-Ortega; Jesús Egido; Sergio Mezzano

A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1) specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage progression. This transgenic mouse model could be used as a new tool for enhancing the knowledge of renal disease progression.


American Journal of Physiology-renal Physiology | 2013

Antihypertensive and renoprotective effect of the kinin pathway activated by potassium in a model of salt sensitivity following overload proteinuria

Leopoldo Ardiles; Areli Cárdenas; María Eugenia Burgos; Alejandra Droguett; Pamela Ehrenfeld; Daniel Carpio; Sergio Mezzano; Carlos D. Figueroa

The albumin overload model induces proteinuria and tubulointersitial damage, followed by hypertension when rats are exposed to a hypersodic diet. To understand the effect of kinin system stimulation on salt-sensitive hypertension and to explore its potential renoprotective effects, the model was induced in Sprague-Dawley rats that had previously received a high-potassium diet to enhance activity of the kinin pathway, followed with/without administration of icatibant to block the kinin B₂ receptor (B₂R). A disease control group received albumin but not potassium or icatibant, and all groups were exposed to a hypersodic diet to induce salt-sensitive hypertension. Potassium treatment increased the synthesis and excretion of tissue kallikrein (Klk1/rKLK1) accompanied by a significant reduction in blood pressure and renal fibrosis and with downregulation of renal transforming growth factor-β (TGF-β) mRNA and protein compared with rats that did not receive potassium. Participation of the B₂R was evidenced by the fact that all beneficial effects were lost in the presence of the B₂R antagonist. In vitro experiments using the HK-2 proximal tubule cell line showed that treatment of tubular cells with 10 nM bradykinin reduced the epithelial-mesenchymal transdifferentiation and albumin-induced production of TGF-β, and the effects produced by bradykinin were prevented by pretreatment with the B₂R antagonist. These experiments support not only the pathogenic role of the kinin pathway in salt sensitivity but also sustain its role as a renoprotective, antifibrotic paracrine system that modulates renal levels of TGF-β.


BioMed Research International | 2015

Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus

Fernando Ezquer; Maximiliano Giraud-Billoud; Daniel Carpio; Fabián Cabezas; Paulette Conget; Marcelo Ezquer

The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.


Toxicology and Applied Pharmacology | 2014

Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

Andrés Aburto; Agustín Barría; Areli Cárdenas; Daniel Carpio; Carlos D. Figueroa; María Eugenia Burgos; Leopoldo Ardiles

Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity.


Revista Medica De Chile | 2018

Daño hepatocelular, proteinuria y autoinmunidad: ¿enfermedad multisistémica o coincidencia de enfermedades? Caso Clínico

Patricio Herrera; Alex Ruiz; Daniel Carpio; Leopoldo Ardiles

We report a 19 years old male presenting with knee pain, elevated liver enzymes and proteinuria. Further investigation found positive antinuclear and anti-smooth muscle antibodies and a liver biopsy revealed the presence of an autoimmune hepatitis. Treatment with corticosteroids and azathioprine was started, resulting in normalization of liver enzymes but proteinuria persisted and a kidney biopsy disclosed a focal segmental glomerulosclerosis. The use of lisinopril resulted in a significative reduction of proteinuria and, after 30 months of follow up, he continues with azathioprine, lisinopril and a low prednisone dose without evidence of liver or kidney disease activity.

Collaboration


Dive into the Daniel Carpio's collaboration.

Top Co-Authors

Avatar

Sergio Mezzano

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Alejandra Droguett

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Marta Ruiz-Ortega

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Bredford Kerr

Centro de Estudios Científicos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leopoldo Ardiles

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Fernando Ezquer

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar

M. Eugenia Burgos

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar

Marcelo Ezquer

Universidad del Desarrollo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge