Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Catchpoole is active.

Publication


Featured researches published by Daniel Catchpoole.


Journal of Clinical Investigation | 2009

Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models

James G. Taylor Vi; Adam Cheuk; Patricia S. Tsang; Joon-Yong Chung; Young K. Song; Krupa Desai; Yanlin Yu; Qing-Rong Chen; Kushal Shah; Victoria Youngblood; Jun Fang; Su Young Kim; Choh Yeung; Lee J. Helman; Arnulfo Mendoza; Vu N. Ngo; Louis M. Staudt; Jun S. Wei; Chand Khanna; Daniel Catchpoole; Stephen J. Qualman; Stephen M. Hewitt; Glenn Merlino; Stephen J. Chanock; Javed Khan

Rhabdomyosarcoma (RMS) is a childhood cancer originating from skeletal muscle, and patient survival is poor in the presence of metastatic disease. Few determinants that regulate metastasis development have been identified. The receptor tyrosine kinase FGFR4 is highly expressed in RMS tissue, suggesting a role in tumorigenesis, although its functional importance has not been defined. Here, we report the identification of mutations in FGFR4 in human RMS tumors that lead to its activation and present evidence that it functions as an oncogene in RMS. Higher FGFR4 expression in RMS tumors was associated with advanced-stage cancer and poor survival, while FGFR4 knockdown in a human RMS cell line reduced tumor growth and experimental lung metastases when the cells were transplanted into mice. Moreover, 6 FGFR4 tyrosine kinase domain mutations were found among 7 of 94 (7.5%) primary human RMS tumors. The mutants K535 and E550 increased autophosphorylation, Stat3 signaling, tumor proliferation, and metastatic potential when expressed in a murine RMS cell line. These mutants also transformed NIH 3T3 cells and led to an enhanced metastatic phenotype. Finally, murine RMS cell lines expressing the K535 and E550 FGFR4 mutants were substantially more susceptible to apoptosis in the presence of a pharmacologic FGFR inhibitor than the control cell lines expressing the empty vector or wild-type FGFR4. Together, our results demonstrate that mutationally activated FGFR4 acts as an oncogene, and these are what we believe to be the first known mutations in a receptor tyrosine kinase in RMS. These findings support the potential therapeutic targeting of FGFR4 in RMS.


Cancer Discovery | 2014

Comprehensive Genomic Analysis of Rhabdomyosarcoma Reveals a Landscape of Alterations Affecting a Common Genetic Axis in Fusion-Positive and Fusion-Negative Tumors

Jack F. Shern; Li Chen; Juliann Chmielecki; Jun S. Wei; Rajesh Patidar; Mara Rosenberg; Lauren Ambrogio; Daniel Auclair; Jianjun Wang; Young K. Song; Catherine Tolman; Laura Hurd; Hongling Liao; Shile Zhang; Dominik Bogen; Andrew S. Brohl; Sivasish Sindiri; Daniel Catchpoole; Thomas C. Badgett; Gad Getz; Jaume Mora; James R. Anderson; Stephen X. Skapek; Frederic G. Barr; Matthew Meyerson; Douglas S. Hawkins; Javed Khan

UNLABELLED Despite gains in survival, outcomes for patients with metastatic or recurrent rhabdomyosarcoma remain dismal. In a collaboration between the National Cancer Institute, Childrens Oncology Group, and Broad Institute, we performed whole-genome, whole-exome, and transcriptome sequencing to characterize the landscape of somatic alterations in 147 tumor/normal pairs. Two genotypes are evident in rhabdomyosarcoma tumors: those characterized by the PAX3 or PAX7 fusion and those that lack these fusions but harbor mutations in key signaling pathways. The overall burden of somatic mutations in rhabdomyosarcoma is relatively low, especially in tumors that harbor a PAX3/7 gene fusion. In addition to previously reported mutations in NRAS, KRAS, HRAS, FGFR4, PIK3CA, and CTNNB1, we found novel recurrent mutations in FBXW7 and BCOR, providing potential new avenues for therapeutic intervention. Furthermore, alteration of the receptor tyrosine kinase/RAS/PIK3CA axis affects 93% of cases, providing a framework for genomics-directed therapies that might improve outcomes for patients with rhabdomyosarcoma. SIGNIFICANCE This is the most comprehensive genomic analysis of rhabdomyosarcoma to date. Despite a relatively low mutation rate, multiple genes were recurrently altered, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. In addition, a majority of rhabdomyosarcoma tumors alter the receptor tyrosine kinase/RAS/PIK3CA axis, providing an opportunity for genomics-guided intervention.


Nature Genetics | 2015

The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias.

Anna Andersson; Jing Ma; Jianmin Wang; Xiang Chen; Amanda Larson Gedman; Jinjun Dang; Joy Nakitandwe; Linda Holmfeldt; Matthew A. Parker; John Easton; Robert Huether; Richard W. Kriwacki; Michael Rusch; Gang Wu; Yongjin Li; Heather L. Mulder; Susana C. Raimondi; Stanley Pounds; Guolian Kang; Lei Shi; Jared Becksfort; Pankaj Gupta; Debbie Payne-Turner; Bhavin Vadodaria; Kristy Boggs; Donald Yergeau; Jayanthi Manne; Guangchun Song; Michael Edmonson; Panduka Nagahawatte

Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole-genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non–MLL-R cases) and 20 older children (MLL-R cases) with leukemia. Our data show that infant MLL-R ALL has one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite this paucity of mutations, we detected activating mutations in kinase-PI3K-RAS signaling pathway components in 47% of cases. Surprisingly, these mutations were often subclonal and were frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (mean of 6.5 mutations/case versus 1.3 mutations/case, P = 7.15 × 10−5) and had frequent mutations (45%) in epigenetic regulators, a category of genes that, with the exception of MLL, was rarely mutated in infant MLL-R ALL.


Cancer Research | 2006

High-Resolution Analysis of Chromosomal Breakpoints and Genomic Instability Identifies PTPRD as a Candidate Tumor Suppressor Gene in Neuroblastoma

Raymond L. Stallings; Prakash Nair; John M. Maris; Daniel Catchpoole; Michael McDermott; Anne O'Meara; Fin Breatnach

Although neuroblastoma is characterized by numerous recurrent, large-scale chromosomal imbalances, the genes targeted by such imbalances have remained elusive. We have applied whole-genome oligonucleotide array comparative genomic hybridization (median probe spacing 6 kb) to 56 neuroblastoma tumors and cell lines to identify genes involved with disease pathogenesis. This set of tumors was selected for having either 11q loss or MYCN amplification, abnormalities that define the two most common genetic subtypes of metastatic neuroblastoma. Our analyses have permitted us to map large-scale chromosomal imbalances and high-level amplifications at exon-level resolution and to identify novel microdeletions and duplications. Chromosomal breakpoints (n = 467) generating imbalances >2 Mb were mapped to intervals ranging between 6 and 50 kb in size, providing substantial information on each abnormality. For example, breakpoints leading to large-scale hemizygous loss of chromosome 11q were highly clustered and preferentially associated with segmental duplications. High-level amplifications of MYCN were extremely complex, often resulting in a series of discontinuous regions of amplification. Imbalances (n = 540) <2 Mb long were also detected. Although the majority (78%) of these imbalances mapped to segmentally duplicated regions and primarily reflect constitutional copy number polymorphisms, many subtle imbalances were detected that are likely somatically acquired alterations and include genes involved with tumorigenesis, apoptosis, or neural cell differentiation. The most frequent microdeletion involved the PTPRD locus, indicating a possible tumor suppressor function for this gene.


Cancer Research | 2007

Credentialing Preclinical Pediatric Xenograft Models Using Gene Expression and Tissue Microarray Analysis

Craig C. Whiteford; Sven Bilke; Braden T. Greer; Qing-Rong Chen; Till Braunschweig; Nicola Cenacchi; Jun S. Wei; Malcolm A. Smith; Peter J. Houghton; Christopher L. Morton; C. Patrick Reynolds; Richard B. Lock; Richard Gorlick; Chand Khanna; Carol J. Thiele; Mikiko Takikita; Daniel Catchpoole; Stephen M. Hewitt; Javed Khan

Human tumor xenografts have been used extensively for rapid screening of the efficacy of anticancer drugs for the past 35 years. The selection of appropriate xenograft models for drug testing has been largely empirical and has not incorporated a similarity to the tumor type of origin at the molecular level. This study is the first comprehensive analysis of the transcriptome of a large set of pediatric xenografts, which are currently used for preclinical drug testing. Suitable models representing the tumor type of origin were identified. It was found that the characteristic expression patterns of the primary tumors were maintained in the corresponding xenografts for the majority of samples. Because a prerequisite for developing rationally designed drugs is that the target is expressed at the protein level, we developed tissue arrays from these xenografts and corroborated that high mRNA levels yielded high protein levels for two tested genes. The web database and availability of tissue arrays will allow for the rapid confirmation of the expression of potential targets at both the mRNA and the protein level for molecularly targeted agents. The database will facilitate the identification of tumor markers predictive of response to tested agents as well as the discovery of new molecular targets.


BMC Genomics | 2004

cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma.

Qing Rong Chen; Sven Bilke; Jun S. Wei; Craig C. Whiteford; Nicola Cenacchi; Alexei L. Krasnoselsky; Braden T. Greer; Chang Gue Son; Frank Westermann; Frank Berthold; Manfred Schwab; Daniel Catchpoole; Javed Khan

BackgroundRecurrent non-random genomic alterations are the hallmarks of cancer and the characterization of these imbalances is critical to our understanding of tumorigenesis and cancer progression.ResultsWe performed array-comparative genomic hybridization (A-CGH) on cDNA microarrays containing 42,000 elements in neuroblastoma (NB). We found that only two chromosomes (2p and 12q) had gene amplifications and all were in the MYCN amplified samples. There were 6 independent non-contiguous amplicons (10.4–69.4 Mb) on chromosome 2, and the largest contiguous region was 1.7 Mb bounded by NAG and an EST (clone: 757451); the smallest region was 27 Kb including an EST (clone: 241343), NCYM, and MYCN. Using a probabilistic approach to identify single copy number changes, we systemically investigated the genomic alterations occurring in Stage 1 and Stage 4 NBs with and without MYCN amplification (stage 1-, 4-, and 4+). We have not found genomic alterations universally present in all (100%) three subgroups of NBs. However we identified both common and unique patterns of genomic imbalance in NB including gain of 7q32, 17q21, 17q23-24 and loss of 3p21 were common to all three categories. Finally we confirm that the most frequent specific changes in Stage 4+ tumors were the loss of 1p36 with gain of 2p24-25 and they had fewer genomic alterations compared to either stage 1 or 4-, indicating that for this subgroup of poor risk NB requires a smaller number of genomic changes are required to develop the malignant phenotype.ConclusionscDNA A-CGH analysis is an efficient method for the detection and characterization of amplicons. Furthermore we were able to detect single copy number changes using our probabilistic approach and identified genomic alterations specific to stage and MYCN amplification.


Molecular Cancer | 2010

A Genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers

Thomas L. Dunwell; Luke B. Hesson; Tibor A. Rauch; Lihui Wang; Richard E. Clark; Ashraf Dallol; Dean Gentle; Daniel Catchpoole; Eamonn R. Maher; Gerd P. Pfeifer; Farida Latif

BackgroundGenetic as well as epigenetic alterations are a hallmark of both epithelial and haematological malignancies. High throughput screens are required to identify epigenetic markers that can be useful for diagnostic and prognostic purposes across malignancies.ResultsHere we report for the first time the use of the MIRA assay (methylated CpG island recovery assay) in combination with genome-wide CpG island arrays to identify epigenetic molecular markers in childhood acute lymphoblastic leukemia (ALL) on a genome-wide scale. We identified 30 genes demonstrating methylation frequencies of ≥25% in childhood ALL, nine genes showed significantly different methylation frequencies in B vs T-ALL. For majority of the genes expression could be restored in methylated leukemia lines after treatment with 5-azaDC. Forty-four percent of the genes represent targets of the polycomb complex. In chronic myeloid leukemia (CML) two of the genes, (TFAP2A and EBF2), demonstrated increased methylation in blast crisis compared to chronic phase (P < 0.05). Furthermore hypermethylation of an autophagy related gene ATG16L2 was associated with poorer prognosis in terms of molecular response to Imatinib treatment. Lastly we demonstrated that ten of these genes were also frequently methylated in common epithelial cancers.ConclusionIn summary we have identified a large number of genes showing frequent methylation in childhood ALL, methylation status of two of these genes is associated with advanced disease in CML and methylation status of another gene is associated with prognosis. In addition a subset of these genes may act as epigenetic markers across hematological malignancies as well as common epithelial cancers.


Epigenetics | 2009

Frequent epigenetic inactivation of the SLIT2 gene in chronic and acute lymphocytic leukemia

Thomas L. Dunwell; Rachel E. Dickinson; Tatjana Stankovic; Ashraf Dallol; Victoria J Weston; Belinda Austen; Daniel Catchpoole; Eamonn R. Maher; Farida Latif

Recently a mouse model of T/natural killer acute lymphoblastic leukemia was used to assess global promoter methylation across the mouse genome using the restriction landmark genomic scanning technique. One of the methylated mouse genes identified in this way was Slit2. There are three mammalian SLIT genes (SLIT1, SLIT2, SLIT3), that belong to a highly conserved family of axon guidance molecules. We have previously demonstrated that SLIT2 is frequently inactivated in lung, breast, colorectal and glioma tumors by hypermethylation of a CpG island in its promoter region, whilst inactivating somatic mutations are rare. Furthermore, we demonstrated that SLIT2 acts as a tumor suppressor gene in breast and colorectal cancer cells. In this report we determined the methylation status of the SLIT2 gene in leukemias (CLL and ALL). SLIT2 was methylated in all 10 leukemia cell lines analyzed (8 completely and 2 partially methylated). SLIT2 expression was restored after treating ALL lines with 5-aza-2dC. In primary ALL and CLL samples, SLIT2 was also frequently methylated, 58% (30/52) B-ALL; 83% (10/12) T-ALL and in 80% (24/30) CLL. Whilst DNA from peripheral blood and bone marrow from healthy control samples showed no SLIT2 methylation. Methylation results in leukemia cell lines and ALL and CLL primary samples were confirmed by direct sequencing of bisulfite modified DNA. Our results demonstrate that methylation of the SLIT2 5’ CpG island is conserved between mice and humans, and therefore is likely to be of functional importance.


Leukemia | 2012

The Fat1 cadherin is overexpressed and an independent prognostic factor for survival in paired diagnosis–relapse samples of precursor B-cell acute lymphoblastic leukemia

C E de Bock; Alireza Ardjmand; Timothy J. Molloy; S M Bone; Daniel M. Johnstone; D M Campbell; Kristy L. Shipman; Trina Yeadon; Jeff Holst; Mark D. Spanevello; G Nelmes; Daniel Catchpoole; Lisa F. Lincz; Andrew W. Boyd; Gordon F. Burns; Rick F. Thorne

Improved survival of patients with acute lymphoblastic leukemia (ALL) has emerged from identifying new prognostic markers; however, 20% of children still suffer recurrence. Previously, the altered expression of Fat1 cadherin has been implicated in a number of solid tumors. In this report, in vitro analysis shows that Fat1 protein is expressed by a range of leukemia cell lines, but not by normal peripheral blood (PB) and bone marrow (BM) cells from healthy donors. In silico analysis of expression of array data from clinical leukemias found significant levels of Fat1 transcript in 11% of acute myeloid leukemia, 29% and 63% of ALL of B and T lineages, respectively, and little or no transcript present in normal PB or BM. Furthermore, in two independent studies of matched diagnosis–relapse of precursor B-cell (preB) ALL pediatric samples (n=32 and n=27), the level of Fat1 mRNA expression was prognostic at the time of diagnosis. High Fat1 mRNA expression was predictive of shorter relapse-free and overall survival, independent of other traditional prognostic markers, including white blood cell count, sex and age. The data presented demonstrate that Fat1 expression in preB-ALL has a role in the emergence of relapse and could provide a suitable therapeutic target in high-risk preB-ALL.


Journal of Clinical Oncology | 2005

Inferring a Tumor Progression Model for Neuroblastoma From Genomic Data

Sven Bilke; Qing Rong Chen; Frank Westerman; Manfred Schwab; Daniel Catchpoole; Javed Khan

PURPOSE The knowledge of the key genomic events that are causal to cancer development and progression not only is invaluable for our understanding of cancer biology but also may have a direct clinical impact. The task of deciphering a model of tumor progression by requiring that it explains (or at least does not contradict) known clinical and molecular evidence can be very demanding, particularly for cancers with complex patterns of clinical and molecular evidence. MATERIALS AND METHODS We formalize the process of model inference and show how a progression model for neuroblastoma (NB) can be inferred from genomic data. The core idea of our method is to translate the model of clonal cancer evolution to mathematical testable rules of inheritance. Seventy-eight NB samples in stages 1, 4S, and 4 were analyzed with array-based comparative genomic hybridization. RESULTS The pattern of recurrent genomic alterations in NB is strongly stage dependent and it is possible to identify traces of tumor progression in this type of data. CONCLUSION A tumor progression model for neuroblastoma is inferred, which is in agreement with clinical evidence, explains part of the heterogeneity of the clinical behavior observed for NB, and is compatible with existing empirical models of NB progression.

Collaboration


Dive into the Daniel Catchpoole's collaboration.

Top Co-Authors

Avatar

Simeon J. Simoff

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Bernard W. Stewart

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Javed Khan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farida Latif

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Quang Vinh Nguyen

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Jun S. Wei

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dachuan Guo

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge