Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Cellucci is active.

Publication


Featured researches published by Daniel Cellucci.


international conference on robotics and automation | 2017

1D Printing of Recyclable Robots

Daniel Cellucci; Robert MacCurdy; Hod Lipson; Sebastian Risi

Recent advances in three-dimensional (3-D) printing are revolutionizing manufacturing, enabling the fabrication of structures with unprecedented complexity and functionality. Yet biological systems are able to fabricate systems with far greater complexity using a process that involves assembling and folding a linear string. Here, we demonstrate a 1-D printing system that uses an approach inspired by the ribosome to fabricate a variety of specialized robotic automata from a single string of source material. This proof-of-concept system involves both a novel manufacturing platform that configures the source material using folding and a computational optimization tool that allows designs to be produced from the specification of high-level goals. We show that our 1-D printing system is able to produce three distinct robots from the same source material, each of which is capable of accomplishing a specialized locomotion task. Moreover, we demonstrate the ability of the printer to use recycled material to produce new designs, enabling an autonomous manufacturing ecosystem capable of repurposing previous iterations to accomplish new tasks.Recent advances in three-dimensional (3-D) printing are revolutionizing manufacturing, enabling the fabrication of structures with unprecedented complexity and functionality. Yet biological systems are able to fabricate systems with far greater complexity using a process that involves assembling and folding a linear string. Here, we demonstrate a 1-D printing system that uses an approach inspired by the ribosome to fabricate a variety of specialized robotic automata from a single string of source material. This proof-of-concept system involves both a novel manufacturing platform that configures the source material using folding and a computational optimization tool that allows designs to be produced from the specification of high-level goals. We show that our 1-D printing system is able to produce three distinct robots from the same source material, each of which is capable of accomplishing a specialized locomotion task. Moreover, we demonstrate the ability of the printer to use recycled material to produce new designs, enabling an autonomous manufacturing ecosystem capable of repurposing previous iterations to accomplish new tasks.


ieee aerospace conference | 2017

Robotically assembled aerospace structures: Digital material assembly using a gantry-type assembler

Greenfield Trinh; Grace Copplestone; Molly O'Connor; Steven Hu; Sebastian Nowak; Kenneth Cheung; Benjamin Jenett; Daniel Cellucci

This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components and are referred to as “digital materials.” We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5×5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.


17th AIAA Aviation Technology, Integration, and Operations Conference | 2017

Development of Mission Adaptive Digital Composite Aerostructure Technologies (MADCAT)

Kenneth Cheung; Daniel Cellucci; Grace Copplestone; Nick Cramer; Jesse Fusco; Benjamin Jenett; Joseph Kim; Alex Mazhari; Greenfield Trinh; Sean Shan-Min Swei

This paper reviews the development of the Mission Adaptive Digital Composite Aerostructures Technologies (MADCAT) v0 demonstrator aircraft, utilizing a novel aerostructure concept that combines advanced composite materials manufacturing and fabrication technologies with a discrete construction approach to achieve high stiffness-todensity ratio ultra-light aerostructures that provide versatility and adaptability. This revolutionary aerostructure concept has the potential to change how future air vehicles are designed, built, and flown, with dramatic reductions in weight and manufacturing complexity – the number of types of structural components needed to build air vehicles – while enabling new mission objectives. We utilize the innovative digital composite materials and discrete construction technologies to demonstrate the feasibility of the proposed aerostructure concept, by building and testing a scaled prototype UAV, MADCAT v0. This paper presents an overview of the design and development of the MADCAT v0 flight demonstrator.


Science | 2018

Handedness in shearing auxetics creates rigid and compliant structures

Jeffrey Lipton; Robert MacCurdy; Zachary Manchester; Lillian Chin; Daniel Cellucci; Daniela Rus

Giving a hand to metamaterials Auxetic materials expand in an unusual way: perpendicular to the direction in which they are stretched. Lipton et al. engineered a type of auxetic material that also has handedness. When this material is sheared, it twists either to the right or the left. By tiling the underlying patterns onto spheres and cylinders, rigid or compliant structures can be made. Linear and 4-degree-of-freedom actuators can thus be made from hollow tubes, which could be valuable for a variety of engineering and medical applications. Science, this issue p. 632 Translating two-dimensional auxetic tilings to spheres and cylinders allows engineering of rigid or compliant structures. In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.


ieee aerospace conference | 2017

Design of multifunctional hierarchical space structures

Benjamin Jenett; Christine Gregg; Daniel Cellucci; Kenneth Cheung

We describe a system for the design of space structures with tunable structural properties based on the discrete assembly of modular lattice elements. These lattice elements can be constructed into larger beam-like elements, which can then be assembled into large scale truss structures. These discrete lattice elements are reversibly assembled with mechanical fasteners, which allows them to be arbitrarily reconfigured into various application-specific designs. In order to assess the validity of this approach, we design two space structures with similar geometry but widely different structural requirements: an aerobrake, driven by strength requirements, and a precision segmented reflector, driven by stiffness and accuracy requirements. We will show agreement between simplified numerical models based on hierarchical assembly and analytical solutions. We will also present an assessment of the error budget resulting from the assembly of discrete structures. Lastly, we will address launch vehicle packing efficiency issues for transporting these structures to lower earth orbit.


ieee aerospace conference | 2017

Digital cellular solid pressure vessels: A novel approach for human habitation in space

Daniel Cellucci; Benjamin Jenett; Kenneth Cheung

It is widely assumed that human exploration beyond Earths orbit will require vehicles capable of providing long-duration habitats that simulate an Earthlike environment — consistent artificial gravity, breathable atmosphere, and sufficient living space-while requiring the minimum possible launch mass. This paper examines how the qualities of digital cellular solids — high-performance, repairability, reconfigurability, tunable mechanical response — allow the accomplishment of long-duration habitat objectives at a fraction of the mass required for traditional structural technologies. To illustrate the impact digital cellular solids could make as a replacement to conventional habitat subsystems, we compare recent proposed deep space habitat structural systems with a digital cellular solids pressure vessel design that consists of a carbon fiber reinforced polymer (CFRP) digital cellular solid cylindrical framework that is lined with an ultra-high molecular weight polyethylene (UHMWPE) skin. We use the analytical treatment of a linear specific modulus scaling cellular solid to find the minimum mass pressure vessel for a structure and find that, for equivalent habitable volume and appropriate safety factors, the use of digital cellular solids provides clear methods for producing structures that are not only repairable and reconfig-urable, but also higher performance than their conventionally-manufactured counterparts.


arXiv: Materials Science | 2016

Evaluation of Cellular Solids Derived From Triply Periodic Minimal Surfaces

Daniel Cellucci; Kenneth Cheung

Cellular solids are a class of materials that have many interesting engineering applications, including ultralight structural materials. The traditional method for analyzing these solids uses convex uniform polyhedral honeycombs to represent the geometry of the material, and this approach has carried over into the design of digital cellular solids. However, the use of such honeycomb-derived lattices makes the problem of decomposing a three-dimensional lattice into a library of two-dimensional parts non-trivial. We introduce a method for generating periodic frameworks from triply periodic minimal surfaces, which result in geometries that are easier to decompose into digital parts. Additionally, we perform finite element modelling of two cellular solids generated from two TPMS, the P- and D-Schwarz, and two cellular solids, the Kelvin and Octet honeycombs. We show that the simulated behavior of these TMPS-derived structures shows the expected modulus of the cellular solid scaling linearly with relative density, which matches the behavior of the highest-coordination honeycomb structure, the octet truss.


ACM Crossroads Student Magazine | 2016

Island three revisited: O'Neill cylinders and digital materials

Daniel Cellucci; Kenneth Cheung

Huge, habitable structures in space are a staple of science fiction, but digital materials could make them a reality.


AIAA SPACE 2015 Conference and Exposition | 2015

SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

Benjamin Jenett; Daniel Cellucci; Kenneth Cheung

Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.


genetic and evolutionary computation conference | 2013

Ribosomal robots: evolved designs inspired by protein folding

Sebastian Risi; Daniel Cellucci; Hod Lipson

Collaboration


Dive into the Daniel Cellucci's collaboration.

Top Co-Authors

Avatar

Kenneth Cheung

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin Jenett

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Cramer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge