Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Chernavvsky is active.

Publication


Featured researches published by Daniel Chernavvsky.


Diabetes Care | 2014

Safety of Outpatient Closed-Loop Control: First Randomized Crossover Trials of a Wearable Artificial Pancreas

Boris P. Kovatchev; Eric Renard; Claudio Cobelli; Howard Zisser; Patrick Keith-Hynes; Stacey M. Anderson; Sue A. Brown; Daniel Chernavvsky; Marc D. Breton; Lloyd B. Mize; Anne Farret; Jerome Place; Daniela Bruttomesso; Simone Del Favero; Federico Boscari; Silvia Galasso; Angelo Avogaro; Lalo Magni; Federico Di Palma; Chiara Toffanin; Mirko Messori; Eyal Dassau; Francis J. Doyle

OBJECTIVE We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes initiated the study at the Universities of Virginia, Padova, and Montpellier and Sansum Diabetes Research Institute; 18 completed the entire protocol. Each patient participated in two 40-h outpatient sessions, CLC versus OL, in randomized order. Sensor (Dexcom G4) and insulin pump (Tandem t:slim) were connected to Diabetes Assistant (DiAs)—a smartphone artificial pancreas platform. The patient operated the system through the DiAs user interface during both CLC and OL; study personnel supervised on site and monitored DiAs remotely. There were no dietary restrictions; 45-min walks in town and restaurant dinners were included in both CLC and OL; alcohol was permitted. RESULTS The primary outcome—reduction in risk for hypoglycemia as measured by the low blood glucose (BG) index (LGBI)—resulted in an effect size of 0.64, P = 0.003, with a twofold reduction of hypoglycemia requiring carbohydrate treatment: 1.2 vs. 2.4 episodes/session on CLC versus OL (P = 0.02). This was accompanied by a slight decrease in percentage of time in the target range of 3.9–10 mmol/L (66.1 vs. 70.7%) and increase in mean BG (8.9 vs. 8.4 mmol/L; P = 0.04) on CLC versus OL. CONCLUSIONS CLC running on a smartphone (DiAs) in outpatient conditions reduced hypoglycemia and hypoglycemia treatments when compared with sensor-augmented pump therapy. This was accompanied by marginal increase in average glycemia resulting from a possible overemphasis on hypoglycemia safety.


Diabetes Care | 2013

Feasibility of Outpatient Fully Integrated Closed-Loop Control First studies of wearable artificial pancreas

Boris P. Kovatchev; Eric Renard; Claudio Cobelli; Howard Zisser; Patrick Keith-Hynes; Stacey M. Anderson; Sue A. Brown; Daniel Chernavvsky; Marc D. Breton; Anne Farret; Marie-Josée Pelletier; Jerome Place; Daniela Bruttomesso; Simone Del Favero; Roberto Visentin; Alessio Filippi; Rachele Scotton; Angelo Avogaro; Francis J. Doyle

OBJECTIVE To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital–hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. RESULTS The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. CONCLUSIONS This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.


Journal of The American Society of Nephrology | 2002

Loss of the VEGF164 and VEGF188 Isoforms Impairs Postnatal Glomerular Angiogenesis and Renal Arteriogenesis in Mice

Virginie Mattot; Lieve Moons; Florea Lupu; Daniel Chernavvsky; R. Ariel Gomez; Desire Collen; Peter Carmeliet

Vascular endothelial growth factor (VEGF) is transcribed in the VEGF(120), VEGF(164), or VEGF(188) isoforms, which differ in receptor binding, matrix association, and angiogenic activity. This vascular growth factor has been implicated in the development of the renal vasculature, but the role of the distinct VEGF isoforms remains unknown. In the present report, renal angiogenesis and arteriogenesis were studied in VEGF(120/120) mice, expressing only the short VEGF(120) isoform. In VEGF(120/120) mice, ingrowth and survival of capillaries in glomeruli, remodeling of peritubular capillaries, vascular coverage by pericytes, and branching of renal arteries were all severely impaired, causing abnormal glomerular filtration and impairing renal function. The arterial branching defect might be related to a reduced expression of renin, a presumed renal arterial branching factor. Glomerulosclerosis and tubular dilation possibly resulted from renal ischemia caused by vascular defects. Thus, VEGF(164) and VEGF(188) not only mediate angiogenesis, but they also play an essential role in renal branching arteriogenesis.


Diabetes Care | 2014

Overnight Glucose Control With an Automated, Unified Safety System in Children and Adolescents With Type 1 Diabetes at Diabetes Camp

Trang T. Ly; Marc D. Breton; Patrick Keith-Hynes; Daniel De Salvo; Paula Clinton; Kari Benassi; Benton Mize; Daniel Chernavvsky; Jerome Place; Darrell M. Wilson; Boris P. Kovatchev; Bruce Buckingham

OBJECTIVE To determine the safety and efficacy of an automated unified safety system (USS) in providing overnight closed-loop (OCL) control in children and adolescents with type 1 diabetes attending diabetes summer camps. RESEARCH DESIGN AND METHODS The Diabetes Assistant (DIAS) USS used the Dexcom G4 Platinum glucose sensor (Dexcom) and t:slim insulin pump (Tandem Diabetes Care). An initial inpatient study was completed for 12 participants to evaluate safety. For the main camp study, 20 participants with type 1 diabetes were randomized to either OCL or sensor-augmented therapy (control conditions) per night over the course of a 5- to 6-day diabetes camp. RESULTS Subjects completed 54 OCL nights and 52 control nights. On an intention-to-treat basis, with glucose data analyzed regardless of system status, the median percent time in range, from 70–150 mg/dL, was 62% (29, 87) for OCL nights versus 55% (25, 80) for sensor-augmented pump therapy (P = 0.233). A per-protocol analysis allowed for assessment of algorithm performance. The median percent time in range, from 70–150 mg/dL, was 73% (50, 89) for OCL nights (n = 41) versus 52% (24, 83) for control conditions (n = 39) (P = 0.037). There was less time spent in the hypoglycemic range <50, <60, and <70 mg/dL during OCL compared with the control period (P = 0.019, P = 0.009, and P = 0.023, respectively). CONCLUSIONS The DIAS USS algorithm is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting.


Diabetes Care | 2016

Multinational Home Use of Closed-Loop Control Is Safe and Effective

Stacey M. Anderson; Dan Raghinaru; Jordan E. Pinsker; Federico Boscari; Eric Renard; Bruce Buckingham; Revital Nimri; Francis J. Doyle; Sue A. Brown; Patrick Keith-Hynes; Marc D. Breton; Daniel Chernavvsky; Wendy C. Bevier; Paige K. Bradley; Daniela Bruttomesso; Simone Del Favero; Roberta Calore; Claudio Cobelli; Angelo Avogaro; Anne Farret; Jerome Place; Trang T. Ly; Satya Shanmugham; Moshe Phillip; Eyal Dassau; Isuru Dasanayake; Craig Kollman; John Lum; Roy W. Beck; Boris P. Kovatchev

OBJECTIVE To evaluate the efficacy of a portable, wearable, wireless artificial pancreas system (the Diabetes Assistant [DiAs] running the Unified Safety System) on glucose control at home in overnight-only and 24/7 closed-loop control (CLC) modes in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS At six clinical centers in four countries, 30 participants 18–66 years old with type 1 diabetes (43% female, 96% non-Hispanic white, median type 1 diabetes duration 19 years, median A1C 7.3%) completed the study. The protocol included a 2-week baseline sensor-augmented pump (SAP) period followed by 2 weeks of overnight-only CLC and 2 weeks of 24/7 CLC at home. Glucose control during CLC was compared with the baseline SAP. RESULTS Glycemic control parameters for overnight-only CLC were improved during the nighttime period compared with baseline for hypoglycemia (time <70 mg/dL, primary end point median 1.1% vs. 3.0%; P < 0.001), time in target (70–180 mg/dL: 75% vs. 61%; P < 0.001), and glucose variability (coefficient of variation: 30% vs. 36%; P < 0.001). Similar improvements for day/night combined were observed with 24/7 CLC compared with baseline: 1.7% vs. 4.1%, P < 0.001; 73% vs. 65%, P < 0.001; and 34% vs. 38%, P < 0.001, respectively. CONCLUSIONS CLC running on a smartphone (DiAs) in the home environment was safe and effective. Overnight-only CLC reduced hypoglycemia and increased time in range overnight and increased time in range during the day; 24/7 CLC reduced hypoglycemia and increased time in range both overnight and during the day. Compared with overnight-only CLC, 24/7 CLC provided additional hypoglycemia protection during the day.


Diabetes Care | 2016

Randomized summer camp crossover trial in 5-to 9-year-old children: Outpatient wearable artificial pancreas is feasible and safe

Simone Del Favero; Federico Boscari; Mirko Messori; Ivana Rabbone; Riccardo Bonfanti; Alberto Sabbion; Riccardo Schiaffini; Roberto Visentin; Roberta Calore; Yenny Teresa Leal Moncada; Silvia Galasso; Alfonso Galderisi; Valeria Vallone; Federico Di Palma; Eleonora Losiouk; Giordano Lanzola; Davide Tinti; Andrea Rigamonti; Marco Marigliano; Angela Zanfardino; Novella Rapini; Angelo Avogaro; Daniel Chernavvsky; Lalo Magni; Claudio Cobelli; Daniela Bruttomesso

OBJECTIVE The Pediatric Artificial Pancreas (PedArPan) project tested a children-specific version of the modular model predictive control (MMPC) algorithm in 5- to 9-year-old children during a camp. RESEARCH DESIGN AND METHODS A total of 30 children, 5- to 9-years old, with type 1 diabetes completed an outpatient, open-label, randomized, crossover trial. Three days with an artificial pancreas (AP) were compared with three days of parent-managed sensor-augmented pump (SAP). RESULTS Overnight time-in-hypoglycemia was reduced with the AP versus SAP, median (25th–75th percentiles): 0.0% (0.0–2.2) vs. 2.2% (0.0–12.3) (P = 0.002), without a significant change of time-in-target, mean: 56.0% (SD 22.5) vs. 59.7% (21.2) (P = 0.430), but with increased mean glucose 173 mg/dL (36) vs. 150 mg/dL (39) (P = 0.002). Overall, the AP granted a threefold reduction of time-in-hypoglycemia (P < 0.001) at the cost of decreased time-in-target, 56.8% (13.5) vs. 63.1% (11.0) (P = 0.022) and increased mean glucose 169 mg/dL (23) vs. 147 mg/dL (23) (P < 0.001). CONCLUSIONS This trial, the first outpatient single-hormone AP trial in a population of this age, shows feasibility and safety of MMPC in young children. Algorithm retuning will be performed to improve efficacy.


Neurosurgery | 2011

Prevalence, Severity, and Impact of Foraminal and Canal Stenosis Among Adults With Degenerative Scoliosis

Kai-Ming G. Fu; Prashant Rhagavan; Christopher I. Shaffrey; Daniel Chernavvsky; Justin S. Smith

BACKGROUND Management approaches for adult scoliosis are primarily based on adults with idiopathic scoliosis and extrapolated to adults with degenerative scoliosis. However, the often substantially, but poorly defined, greater degenerative changes present in degenerative scoliosis impact the management of these patients. OBJECTIVE To assess the prevalence, severity, and impact of canal and foraminal stenosis in adults with degenerative scoliosis seeking operative treatment. METHODS A prospectively collected database of adult patients with deformity was reviewed for consecutive patients with degenerative scoliosis seeking surgical treatment, without prior corrective surgery. Patients completed the Oswestry Disability Index, SF-12, Scoliosis Research Society 22 questionnaire, and a pain numeric rating scale (0-10). Based on MRI or CT myelogram, the central canal and foraminae from T6 to S1 were graded for stenosis (normal or minimal/mild/moderate/severe). RESULTS Thirty-six patients were included (mean age, 68.9 years; range, 51-85). The mean leg pain numeric rating scale was 6.5, and the mean Oswestry Disability Index score was 53.2. At least 1 level of severe foraminal stenosis was identified in 97% of patients; 83% had maximum foraminal stenosis in the curve concavity. All but 1 patient reported significant radicular pain, including 78% with discrete and 19% with multiple radiculopathies. Of those with discrete radiculopathies, 76% had pain corresponding to areas of the most severe foraminal stenosis, and 24% had pain corresponding to areas of moderate stenosis. CONCLUSION Significant foraminal stenosis was prevalent in patients with degenerative scoliosis, and the distribution of leg pain corresponded to levels of moderate or severe foraminal stenosis. Failure to address symptomatic foraminal stenosis when surgically treating adult degenerative scoliosis may negatively impact clinical outcomes.


Pediatric Diabetes | 2017

Heart rate informed artificial pancreas system enhances glycemic control during exercise in adolescents with T1D

Mark D. DeBoer; Daniel Chernavvsky; Katarina Topchyan; Boris P. Kovatchev; Gary L. Francis; Marc D. Breton

To evaluate the safety and performance of using a heart rate (HR) monitor to inform an artificial pancreas (AP) system during exercise among adolescents with type 1 diabetes (T1D).


Diabetes Care | 2017

Closed Loop Control During Intense Prolonged Outdoor Exercise in Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski Study

Marc D. Breton; Daniel Chernavvsky; Gregory P. Forlenza; Mark D. DeBoer; Jessica Robic; R. Paul Wadwa; Laurel Messer; Boris P. Kovatchev; David M. Maahs

OBJECTIVE Intense exercise is a major challenge to the management of type 1 diabetes (T1D). Closed-loop control (CLC) systems (artificial pancreas) improve glycemic control during limited intensity and short duration of physical activity (PA). However, CLC has not been tested during extended vigorous outdoor exercise common among adolescents. RESEARCH DESIGN AND METHODS Skiing presents unique metabolic challenges: intense prolonged PA, cold, altitude, and stress/fear/excitement. In a randomized controlled trial, 32 adolescents with T1D (ages 10–16 years) participated in a 5-day ski camp (∼5 h skiing/day) at two sites: Wintergreen, VA, and Breckenridge, CO. Participants were randomized to the University of Virginia CLC system or remotely monitored sensor-augmented pump (RM-SAP). The CLC and RM-SAP groups were coarsely paired by age and hemoglobin A1c (HbA1c). All subjects were remotely monitored 24 h per day by the study physicians and clinical team. RESULTS Compared with physician-monitored open loop, percent time in range (70–180 mg/dL) improved using CLC: 71.3 vs. 64.7% (+6.6% [95% CI 1–12]; P = 0.005), with maximum effect late at night. Hypoglycemia exposure and carbohydrate treatments were improved overall (P = 0.001 and P = 0.007) and during the daytime with strong ski level effects (P = 0.0001 and P = 0.006); ski/snowboard proficiency was balanced between groups but with a very strong site effect: naive in Virginia and experienced in Colorado. There was no adverse event associated with CLC; the participants’ feedback was overwhelmingly positive. CONCLUSIONS CLC in adolescents with T1D improved glycemic control and reduced exposure to hypoglycemia during prolonged intensive winter sport activities, despite the added challenges of cold and altitude.


Pediatric Diabetes | 2016

Use of an artificial pancreas among adolescents for a missed snack bolus and an underestimated meal bolus.

Daniel Chernavvsky; Mark D. DeBoer; Patrick Keith-Hynes; Benton Mize; Molly McElwee; Susan Demartini; Spencer F Dunsmore; Christian A. Wakeman; Boris P. Kovatchev; Marc D. Breton

The objective of this study was to evaluate the safety and performance of the artificial pancreas (AP) in adolescents with type 1 diabetes (T1D) following insulin omission for food.

Collaboration


Dive into the Daniel Chernavvsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge