Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Cohen-Or is active.

Publication


Featured researches published by Daniel Cohen-Or.


symposium on geometry processing | 2004

Laplacian surface editing

Olga Sorkine; Daniel Cohen-Or; Yaron Lipman; Marc Alexa; Christian Rössl; Hans-Peter Seidel

Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian representation, we develop useful editing operations: interactive free-form deformation in a region of interest based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness of our approach in several examples, showing that the editing operations change the shape while respecting the structural geometric detail.


ieee visualization | 2001

Point set surfaces

Marc Alexa; Johannes Behr; Daniel Cohen-Or; Shachar Fleishman; David Levin; Cláudio T. Silva

We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). We present tools to increase or decrease the density of the points, thus, allowing an adjustment of the spacing among the points to control the fidelity of the representation. To display the point set surface, we introduce a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality shading effects and smooth silhouettes at interactive frame rates.


IEEE Transactions on Visualization and Computer Graphics | 2003

Computing and rendering point set surfaces

Marc Alexa; Johannes Behr; Daniel Cohen-Or; Shachar Fleishman; David Levin; Cláudio T. Silva

We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the method of moving least squares (MLS). The computation of points on the surface is local, which results in an out-of-core technique that can handle any point set. We show that the approximation error is bounded and present tools to increase or decrease the density of the points, thus allowing an adjustment of the spacing among the points to control the error. To display the point set surface, we introduce a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality shading effects and smooth silhouettes at interactive frame rates.


international conference on computer graphics and interactive techniques | 2000

As-rigid-as-possible shape interpolation

Marc Alexa; Daniel Cohen-Or; David Levin

We present an object-space morphing technique that blends the interiors of given two- or three-dimensional shapes rather than their boundaries. The morph is rigid in the sense that local volumes are least-distorting as they vary from their source to target configurations. Given a boundary vertex correspondence, the source and target shapes are decomposed into isomorphic simplicial complexes. For the simplicial complexes, we find a closed-form expression allocating the paths of both boundary and interior vertices from source to target locations as a function of time. Key points are the identification of the optimal simplex morphing and the appropriate definition of an error functional whose minimization defines the paths of the vertices. Each pair of corresponding simplices defines an affine transformation, which is factored into a rotation and a stretching transformation. These local transformations are naturally interpolated over time and serve as the basis for composing a global coherent least-distorting transformation.


ACM Transactions on Graphics | 2006

Salient geometric features for partial shape matching and similarity

Ran Gal; Daniel Cohen-Or

This article introduces a method for partial matching of surfaces represented by triangular meshes. Our method matches surface regions that are numerically and topologically dissimilar, but approximately similar regions. We introduce novel local surface descriptors which efficiently represent the geometry of local regions of the surface. The descriptors are defined independently of the underlying triangulation, and form a compatible representation that allows matching of surfaces with different triangulations. To cope with the combinatorial complexity of partial matching of large meshes, we introduce the abstraction of salient geometric features and present a method to construct them. A salient geometric feature is a compound high-level feature of nontrivial local shapes. We show that a relatively small number of such salient geometric features characterizes the surface well for various similarity applications. Matching salient geometric features is based on indexing rotation-invariant features and a voting scheme accelerated by geometric hashing. We demonstrate the effectiveness of our method with a number of applications, such as computing self-similarity, alignments, and subparts similarity.


IEEE Transactions on Visualization and Computer Graphics | 2003

A survey of visibility for walkthrough applications

Daniel Cohen-Or; Yiorgos Chrysanthou; Cláudio T. Silva

Visibility algorithms for walkthrough and related applications have grown into a significant area, spurred by the growth in the complexity of models and the need for highly interactive ways of navigating them. In this survey, we review the fundamental issues in visibility and conduct an overview of the visibility culling techniques developed in the last decade. The taxonomy we use distinguishes point-based methods from-region methods. Point-based methods are further subdivided into object and image-precision techniques, while from-region approaches can take advantage of the cell-and-portal structure of architectural environments or handle generic scenes.


international conference on computer graphics and interactive techniques | 2008

Deep photo: model-based photograph enhancement and viewing

Johannes Kopf; Boris Neubert; Billy Chen; Michael F. Cohen; Daniel Cohen-Or; Oliver Deussen; Matthew Uyttendaele; Dani Lischinski

In this paper, we introduce a novel system for browsing, enhancing, and manipulating casual outdoor photographs by combining them with already existing georeferenced digital terrain and urban models. A simple interactive registration process is used to align a photograph with such a model. Once the photograph and the model have been registered, an abundance of information, such as depth, texture, and GIS data, becomes immediately available to our system. This information, in turn, enables a variety of operations, ranging from dehazing and relighting the photograph, to novel view synthesis, and overlaying with geographic information. We describe the implementation of a number of these applications and discuss possible extensions. Our results show that augmenting photographs with already available 3D models of the world supports a wide variety of new ways for us to experience and interact with our everyday snapshots.


international conference on computer graphics and interactive techniques | 2005

Robust moving least-squares fitting with sharp features

Shachar Fleishman; Daniel Cohen-Or; Cláudio T. Silva

We introduce a robust moving least-squares technique for reconstructing a piecewise smooth surface from a potentially noisy point cloud. We use techniques from robust statistics to guide the creation of the neighborhoods used by the moving least squares (MLS) computation. This leads to a conceptually simple approach that provides a unified framework for not only dealing with noise, but also for enabling the modeling of surfaces with sharp features.Our technique is based on a new robust statistics method for outlier detection: the forward-search paradigm. Using this powerful technique, we locally classify regions of a point-set to multiple outlier-free smooth regions. This classification allows us to project points on a locally smooth region rather than a surface that is smooth everywhere, thus defining a piecewise smooth surface and increasing the numerical stability of the projection operator. Furthermore, by treating the points across the discontinuities as outliers, we are able to define sharp features. One of the nice features of our approach is that it automatically disregards outliers during the surface-fitting phase.


The Visual Computer | 2008

Consistent mesh partitioning and skeletonisation using the shape diameter function

Lior Shapira; Ariel Shamir; Daniel Cohen-Or

Mesh partitioning and skeletonisation are fundamental for many computer graphics and animation techniques. Because of the close link between an object’s skeleton and its boundary, these two problems are in many cases complementary. Any partitioning of the object can assist in the creation of a skeleton and any segmentation of the skeleton can infer a partitioning of the object. In this paper, we consider these two problems on a wide variety of meshes, and strive to construct partitioning and skeletons which remain consistent across a family of objects, not a single one. Such families can consist of either a single object in multiple poses and resolutions, or multiple objects which have a general common shape. To achieve consistency, we base our algorithms on a volume-based shape-function called the shape-diameter-function (SDF), which remains largely oblivious to pose changes of the same object and maintains similar values in analogue parts of different objects. The SDF is a scalar function defined on the mesh surface; however, it expresses a measure of the diameter of the object’s volume in the neighborhood of each point on the surface. Using the SDF we are able to process and manipulate families of objects which contain similarities using a simple and consistent algorithm: consistently partitioning and creating skeletons among multiple meshes.


eurographics | 2011

A Survey on Shape Correspondence

Oliver van Kaick; Hao Zhang; Ghassan Hamarneh; Daniel Cohen-Or

We review methods designed to compute correspondences between geometric shapes represented by triangle meshes, contours or point sets. This survey is motivated in part by recent developments in space–time registration, where one seeks a correspondence between non‐rigid and time‐varying surfaces, and semantic shape analysis, which underlines a recent trend to incorporate shape understanding into the analysis pipeline. Establishing a meaningful correspondence between shapes is often difficult because it generally requires an understanding of the structure of the shapes at both the local and global levels, and sometimes the functionality of the shape parts as well. Despite its inherent complexity, shape correspondence is a recurrent problem and an essential component of numerous geometry processing applications. In this survey, we discuss the different forms of the correspondence problem and review the main solution methods, aided by several classification criteria arising from the problem definition. The main categories of classification are defined in terms of the input and output representation, objective function and solution approach. We conclude the survey by discussing open problems and future perspectives.

Collaboration


Dive into the Daniel Cohen-Or's collaboration.

Top Co-Authors

Avatar

Hao Zhang

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Shamir

Interdisciplinary Center Herzliya

View shared research outputs
Top Co-Authors

Avatar

Dani Lischinski

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Sharf

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niloy J. Mitra

University College London

View shared research outputs
Top Co-Authors

Avatar

Minglun Gong

Memorial University of Newfoundland

View shared research outputs
Researchain Logo
Decentralizing Knowledge