Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel Côté is active.

Publication


Featured researches published by Daniel Côté.


Nature | 2005

In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment.

Dorothy A. Sipkins; Xunbin Wei; Juwell Wu; Judith Runnels; Daniel Côté; Terry K. Means; Andrew D. Luster; David T. Scadden; Charles P. Lin

The organization of cellular niches is known to have a key role in regulating normal stem cell differentiation and regeneration, but relatively little is known about the architecture of microenvironments that support malignant metastasis. Using dynamic in vivo confocal imaging, here we show that murine bone marrow contains unique anatomic regions defined by specialized endothelium. This vasculature expresses the adhesion molecule E-selectin and the chemoattractant stromal-cell-derived factor 1 (SDF-1) in discrete, discontinuous areas that influence the homing of a variety of tumour cell lines. Disruption of the interactions between SDF-1 and its receptor CXCR4 inhibits the homing of Nalm-6 cells (an acute lymphoblastic leukaemia cell line) to these vessels. Further studies revealed that circulating leukaemic cells can engraft around these vessels, suggesting that this molecularly distinct vasculature demarcates a microenvironment for early metastatic tumour spread in bone marrow. Finally, purified haematopoietic stem/progenitor cells and lymphocytes also localize to the same microdomains, indicating that this vasculature might also function in benign states to demarcate specific portals for the entry of cells into the marrow space. Specialized vascular structures therefore appear to delineate a microenvironment with unique physiology that can be exploited by circulating malignant cells.


Nature | 2009

Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche

Cristina Lo Celso; Heather E. Fleming; Juwell Wu; Cher X. Zhao; Sam Miake-Lye; Joji Fujisaki; Daniel Côté; David W. Rowe; Charles P. Lin; David T. Scadden

Stem cells reside in a specialized, regulatory environment termed the niche that dictates how they generate, maintain and repair tissues. We have previously documented that transplanted haematopoietic stem and progenitor cell populations localize to subdomains of bone-marrow microvessels where the chemokine CXCL12 is particularly abundant. Using a combination of high-resolution confocal microscopy and two-photon video imaging of individual haematopoietic cells in the calvarium bone marrow of living mice over time, we examine the relationship of haematopoietic stem and progenitor cells to blood vessels, osteoblasts and endosteal surface as they home and engraft in irradiated and c-Kit-receptor-deficient recipient mice. Osteoblasts were enmeshed in microvessels and relative positioning of stem/progenitor cells within this complex tissue was nonrandom and dynamic. Both cell autonomous and non-autonomous factors influenced primitive cell localization. Different haematopoietic cell subsets localized to distinct locations according to the stage of differentiation. When physiological challenges drove either engraftment or expansion, bone-marrow stem/progenitor cells assumed positions in close proximity to bone and osteoblasts. Our analysis permits observing in real time, at a single cell level, processes that previously have been studied only by their long-term outcome at the organismal level.


Nature | 2014

Direct measurement of local oxygen concentration in the bone marrow of live animals

Joel A. Spencer; Francesca Ferraro; Emmanuel Roussakis; Alyssa Klein; Juwell Wu; Judith Runnels; Walid Zaher; Luke J. Mortensen; Clemens Alt; Raphaël Turcotte; Rushdia Z. Yusuf; Daniel Côté; Sergei A. Vinogradov; David T. Scadden; Charles P. Lin

Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (<32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (∼9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.


Nature | 2011

In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche.

Joji Fujisaki; Wu J; Alicia L. Carlson; Lev Silberstein; Prabhakar Putheti; Rafael A. Larocca; Wenda Gao; Toshiki I. Saito; Lo Celso C; Tsuyuzaki H; Taichi Sato; Daniel Côté; Megan Sykes; Terry B. Strom; David T. Scadden; Charles P. Lin

Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (Treg) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with Treg cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. Treg cells seem to participate in creating a localized zone where HSPCs reside and where Treg cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.


Nature | 2011

In vivo imaging of Treg cells providing immune privilegeto the haematopoietic stem-cell niche

Joji Fujisaki; Juwell Wu; Alicia L. Carlson; Lev Silberstein; Prabhakar Putheti; Rafael A. Larocca; Wenda Gao; Toshiki I. Saito; Cristina Lo Celso; Hitoshi Tsuyuzaki; Tatsuyuki Sato; Daniel Côté; Megan Sykes; Terry B. Strom; David T. Scadden; Charles P. Lin

Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (Treg) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with Treg cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. Treg cells seem to participate in creating a localized zone where HSPCs reside and where Treg cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.


Journal of Experimental Medicine | 2006

An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues

Ronjon Chakraverty; Daniel Côté; Jennifer Buchli; Pete Cotter; Richard Hsu; Guiling Zhao; Teviah Sachs; Costas Pitsillides; Roderick T. Bronson; Terry K. Means; Charles P. Lin; Megan Sykes

Transfer of T cells to freshly irradiated allogeneic recipients leads to their rapid recruitment to nonlymphoid tissues, where they induce graft-versus-host disease (GVHD). In contrast, when donor T cells are transferred to established mixed chimeras (MCs), GVHD is not induced despite a robust graft-versus-host (GVH) reaction that eliminates normal and malignant host hematopoietic cells. We demonstrate here that donor GVH-reactive T cells transferred to MCs or freshly irradiated mice undergo similar expansion and activation, with similar up-regulation of homing molecules required for entry to nonlymphoid tissues. Using dynamic two-photon in vivo microscopy, we show that these activated T cells do not enter GVHD target tissues in established MCs, contrary to the dogma that activated T cells inevitably traffic to nonlymphoid tissues. Instead, we show that the presence of inflammation within a nonlymphoid tissue is a prerequisite for the trafficking of activated T cells to that site. Our studies help to explain the paradox whereby GVH-reactive T cells can mediate graft-versus-leukemia responses without inducing GVHD in established MCs.


IEEE Journal of Selected Topics in Quantum Electronics | 2008

In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy

Israel Veilleux; Joel A. Spencer; David P. Biss; Daniel Côté; Charles P. Lin

Studies of biological processes, such as disease progression and response to therapy, call for live imaging methods that allow continuous observation without terminating the study subject for histological tissue processing. Among all current imaging modalities, optical microscopy is the only method capable of probing live tissue with cellular and subcellular resolution. We present a video-rate (30 frames/s), multimodality imaging system that is designed specifically for live animal imaging and cell tracking. In vivo depth-sectioned, high-resolution images are obtained using confocal and nonlinear optical techniques that extract structural, functional, and molecular information by combining multiple contrast mechanisms, including back scattering, fluorescence (from single- and two-photon excitation), second harmonic generation, and coherent anti-Stokes Raman scattering. Simultaneous use of up to three modalities is possible and eliminates the need for coregistration, especially on large-scale images. A real-time movement correction algorithm was developed to extend integration times in cases where the image needs to be stabilized against subject movement. Finally, imaging of fast moving leukocytes in blood vessels is made possible with a modification that permits operation at 120 frames/s over a smaller area. Sample imagery obtained in vivo with the microscope is presented to illustrate the capabilities.


Journal of Biomedical Optics | 2008

In vivo confocal and multiphoton microendoscopy

Pilhan Kim; Mehron Puoris’haag; Daniel Côté; Charles P. Lin; Seok Hyun Yun

The ability to conduct high-resolution fluorescence imaging in internal organs of small animal models in situ and over time can make a significant impact in biomedical research. Toward this goal, we developed a real-time confocal and multiphoton endoscopic imaging system. Using 1-mm-diameter endoscopes based on gradient index lenses, we demonstrate video-rate multicolor multimodal imaging with cellular resolution in live mice.


NeuroImage | 2015

In vivo histology of the myelin g-ratio with magnetic resonance imaging

Nikola Stikov; Jennifer S. W. Campbell; Thomas Stroh; Mariette Lavelée; Stephen Frey; Jennifer Novek; Stephen Nuara; Ming-Kai Ho; Barry J. Bedell; Robert F. Dougherty; Ilana R. Leppert; Mathieu Boudreau; Sridar Narayanan; Tanguy Duval; Julien Cohen-Adad; Paul-Alexandre Picard; Alicja Gasecka; Daniel Côté; G. Bruce Pike

The myelin g-ratio, defined as the ratio between the inner and the outer diameter of the myelin sheath, is a fundamental property of white matter that can be computed from a simple formula relating the myelin volume fraction to the fiber volume fraction or the axon volume fraction. In this paper, a unique combination of magnetization transfer, diffusion imaging and histology is presented, providing a novel method for in vivo magnetic resonance imaging of the axon volume fraction and the myelin g-ratio. Our method was demonstrated in the corpus callosum of one cynomolgus macaque, and applied to obtain full-brain g-ratio maps in one healthy human subject and one multiple sclerosis patient. In the macaque, the g-ratio was relatively constant across the corpus callosum, as measured by both MRI and electron microscopy. In the human subjects, the g-ratio in multiple sclerosis lesions was higher than in normal appearing white matter, which was in turn higher than in healthy white matter. Measuring the g-ratio brings us one step closer to fully characterizing white matter non-invasively, making it possible to perform in vivo histology of the human brain during development, aging, disease and treatment.


Journal of Immunology | 2014

Neutrophils Mediate Blood–Spinal Cord Barrier Disruption in Demyelinating Neuroinflammatory Diseases

Benoit Aubé; Sébastien A. Lévesque; Alexandre Paré; Émilie Chamma; Hania Kebir; Roser Gorina; Marc-André Lécuyer; Jorge Ivan Alvarez; Yves De Koninck; Britta Engelhardt; Alexandre Prat; Daniel Côté; Steve Lacroix

Disruption of the blood–brain and blood–spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP+ myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP+ cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.

Collaboration


Dive into the Daniel Côté's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge