Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel D. Billadeau is active.

Publication


Featured researches published by Daniel D. Billadeau.


Nature Reviews Immunology | 2002

VAV proteins as signal integrators for multi-subunit immune-recognition receptors

Martin Turner; Daniel D. Billadeau

In recent years, substantial progress has been made towards the identification of intracellular signalling molecules that couple multi-subunit immune-recognition receptors (MIRRs) to their various effector functions. Among these, the VAV proteins have been observed to have a crucial role in regulating some of the earliest events in receptor signalling. VAV proteins function, in part, as guanine-nucleotide exchange factors (GEFs) for the RHO/RAC family of GTPases. This review focuses on the role of VAV proteins in the regulation of lymphocyte development and function, and emphasizes the regulatory roles that these proteins have through both GEF-dependent and -independent mechanisms.


Nature Immunology | 2003

NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway.

Daniel D. Billadeau; Jadee L. Upshaw; Renee A. Schoon; Christopher J. Dick; Paul J. Leibson

The immune recognition receptor complex NKG2D-DAP10 on natural killer cells is stimulated by specific ligands carried on virus-infected and malignant cells. Because DAP10 does not have an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic tail, its ability to trigger killing has been debated. Here we show that a crucial Tyr-Ile-Asn-Met amino acid motif in the cytoplasmic tail of DAP10 couples receptor stimulation to the downstream activation of phosphatidylinositol 3-kinase, Vav1, Rho family GTPases and phospholipase C. Unlike that of ITAM-containing receptors, the activation of NKG2D-DAP10 proceeds independently of Syk family protein tyrosine kinases. Yet the signals initiated by NKG2D-DAP10 are fully capable of inducing killing. Our findings identify a previously unknown mechanism by which receptor complexes that lack ITAM motifs can trigger lymphocyte activation.


Developmental Cell | 2009

A FAM21-Containing WASH Complex Regulates Retromer-Dependent Sorting

Timothy S. Gomez; Daniel D. Billadeau

The Arp2/3 complex regulates endocytosis, sorting, and trafficking, yet the Arp2/3-stimulating factors orchestrating these distinct events remain ill defined. WASH (Wiskott-Aldrich Syndrome Protein and SCAR Homolog) is an Arp2/3 activator with unknown function that was duplicated during primate evolution. We demonstrate that WASH associates with tubulin and localizes to early endosomal subdomains, which are enriched in Arp2/3, F-actin, and retromer components. Although WASH localized with activated receptors, it was not essential for endocytosis. However, WASH did regulate retromer-mediated retrograde CI-MPR trafficking, which required its association with endosomes, Arp2/3-directed F-actin regulation, and tubulin interaction. Moreover, WASH exists in a multiprotein complex containing FAM21, which links WASH to endosomes and is required for WASH-dependent retromer-mediated sorting. Significantly, without WASH, retromer tubulation was exaggerated, supporting a model wherein WASH links retromer-mediated cargo containing tubules to microtubules for Golgi-directed trafficking and generates F-actin-driven force for tubule scission.


Nature Reviews Immunology | 2007

Regulation of T-cell activation by the cytoskeleton

Daniel D. Billadeau; Jeffrey C. Nolz; Timothy S. Gomez

To become activated, T cells must efficiently recognize antigen-presenting cells or target cells through several complex cytoskeleton-dependent processes, including integrin-mediated adhesion, immunological-synapse formation, cellular polarization, receptor sequestration and signalling. The actin and microtubule systems provide the dynamic cellular framework that is required to orchestrate these processes and ultimately contol T-cell activation. Here, we discuss recent advances that have furthered our understanding of the crucial importance of the T-cell cytoskeleton in controlling these aspects of T-cell immune recognition.


Cancer Research | 2005

Glycogen Synthase Kinase-3β Participates in Nuclear Factor κB–Mediated Gene Transcription and Cell Survival in Pancreatic Cancer Cells

Andrei V. Ougolkov; Martin E. Fernandez-Zapico; Doris N. Savoy; Raul Urrutia; Daniel D. Billadeau

Recent studies using glycogen synthase kinase-3beta (GSK-3beta)-deficient mouse embryonic fibroblasts suggest that GSK-3beta positively regulates nuclear factor kappaB (NFkappaB)-mediated gene transcription. Because NFkappaB is suggested to participate in cell proliferation and survival pathways in pancreatic cancer, we investigated the role of GSK-3beta in regulating these cellular processes. Herein, we show that pancreatic cancer cells contain a pool of active GSK-3beta and that pharmacologic inhibition of GSK-3 kinase activity using small molecule inhibitors or genetic depletion of GSK-3beta by RNA interference leads to decreased cancer cell proliferation and survival. Mechanistically, we show that GSK-3beta influences NFkappaB-mediated gene transcription at a point distal to the Ikappa kinase complex, as only ectopic expression of the NFkappaB subunits p65/p50, but not an Ikappa kinase beta constitutively active mutant, could rescue the decreased cellular proliferation and survival associated with GSK-3beta inhibition. Taken together, our results simultaneously identify a previously unrecognized role for GSK-3beta in cancer cell survival and proliferation and suggest GSK-3beta as a potential therapeutic target in the treatment of pancreatic cancer.


Molecular and Cellular Biology | 2003

Vav1 Dephosphorylation by the Tyrosine Phosphatase SHP-1 as a Mechanism for Inhibition of Cellular Cytotoxicity

Christopher C. Stebbins; Carsten Watzl; Daniel D. Billadeau; Paul J. Leibson; Deborah N. Burshtyn; Eric O. Long

ABSTRACT Here, we present data suggesting a novel mechanism for regulation of natural killer (NK) cell cytotoxicity through inhibitory receptors. Interaction of activation receptors with their ligands on target cells induces cytotoxicity by NK cells. This activation is under negative control by inhibitory receptors that recruit tyrosine phosphatase SHP-1 upon binding major histocompatibility class I on target cells. How SHP-1 blocks the activation pathway is not known. To identify SHP-1 substrates, an HLA-C-specific inhibitory receptor fused to a substrate-trapping mutant of SHP-1 was expressed in NK cells. Phosphorylated Vav1, a regulator of actin cytoskeleton, was the only protein detectably associated with the catalytic site of SHP-1 during NK cell contact with target cells expressing HLA-C. Vav1 trapping was independent of actin polymerization, suggesting that inhibition of cellular cytotoxicity occurs through an early dephosphorylation of Vav1 by SHP-1, which blocks actin-dependent activation signals. Such a mechanism explains how inhibitory receptors can block activating signals induced by different receptors.


Nature | 2010

Structure and control of the actin regulatory WAVE complex.

Zhucheng Chen; Dominika Borek; Shae B. Padrick; Timothy S. Gomez; Zoltan Metlagel; Ayman M. Ismail; Junko Umetani; Daniel D. Billadeau; Zbyszek Otwinowski; Michael K. Rosen

Members of the Wiskott–Aldrich syndrome protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation with the Arp2/3 complex. The WASP relative WAVE regulates lamellipodia formation within a 400-kilodalton, hetero-pentameric WAVE regulatory complex (WRC). The WRC is inactive towards the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. Here we report the 2.3-ångstrom crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting the way in which these signals stimulate WRC activity towards the Arp2/3 complex. The spatial proximity of the Rac binding site and the large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes.


Current Biology | 2006

The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation

Jeffrey C. Nolz; Timothy S. Gomez; Peimin Zhu; Shuixing Li; Ricardo B. Medeiros; Yoji Shimizu; Janis K. Burkhardt; Bruce D. Freedman; Daniel D. Billadeau

BACKGROUND The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. RESULTS By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. CONCLUSIONS These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.


Journal of Clinical Investigation | 2002

ITAMs versus ITIMs: striking a balance during cell regulation

Daniel D. Billadeau; Paul J. Leibson

Functional immune responses evolve through an exquisitely controlled process integrating signals from activating and inhibitory receptors on the immune cell surface. These complex interactions, which regulate both the quality and magnitude of the ultimate response, depend crucially on two short, loosely conserved motifs found in the intracellular domain of various signaling proteins. These motifs, termed “ITAMs” and “ITIMs” for immunoreceptor tyrosine-based activation (or inhibititory) motifs, provide the basis for two opposed signaling modules that duel for control of cellular activation within the immune system. Well over a decade ago it was observed that the subunits associated with the B cell and T cell antigen


Journal of Immunology | 2003

SLP-76 Coordinates Nck-Dependent Wiskott-Aldrich Syndrome Protein Recruitment with Vav-1/Cdc42-Dependent Wiskott-Aldrich Syndrome Protein Activation at the T Cell-APC Contact Site

Rong Zeng; Robert T. Abraham; Michael Way; Daniel D. Billadeau; Julie Bubeck-Wardenberg; Janis K. Burkhardt

We have shown previously that Wiskott-Aldrich syndrome protein (WASP) activation at the site of T cell-APC interaction is a two-step process, with recruitment dependent on the proline-rich domain and activation dependent on binding of Cdc42-GTP to the GTPase binding domain. Here, we show that WASP recruitment occurs through binding to the C-terminal Src homology 3 domain of Nck. In contrast, WASP activation requires Vav-1. In Vav-1-deficient T cells, WASP recruitment proceeds normally, but localized activation of Cdc42 and WASP is disrupted. The recruitment and activation of WASP are coordinated by tyrosine-phosphorylated Src homology 2 domain-containing leukocyte protein of 76 kDa, which functions as a scaffold, bringing Nck and WASP into proximity with Vav-1 and Cdc42-GTP. Taken together, these findings reconstruct the signaling pathway leading from TCR ligation to localized WASP activation.

Collaboration


Dive into the Daniel D. Billadeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ezra Burstein

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alan P. Kozikowski

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge