Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel D. Swartz is active.

Publication


Featured researches published by Daniel D. Swartz.


Stroke | 2007

Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation

Hui Meng; Zhijie Wang; Yiemeng Hoi; Ling Gao; Eleni Metaxa; Daniel D. Swartz; John Kolega

Background and Purpose— Arterial bifurcation apices are common sites for cerebral aneurysms, raising the possibility that the unique hemodynamic conditions associated with flow dividers predispose the apical vessel wall to aneurysm formation. This study sought to identify the specific hemodynamic insults that lead to maladaptive vascular remodeling associated with aneurysm development and to identify early remodeling events at the tissue and cellular levels. Methods— We surgically created new branch points in the carotid vasculature of 6 female adult dogs. In vivo angiographic imaging and computational fluid dynamics simulations revealed the detailed hemodynamic microenvironment for each bifurcation, which were then spatially correlated with histologic features showing specific tissue responses. Results— We observed 2 distinct patterns of vessel wall remodeling: (1) hyperplasia that formed an intimal pad at the bifurcation apex and (2) destructive remodeling in the adjacent region of flow acceleration that resembled the initiation of an intracranial aneurysm, characterized by disruption of the internal elastic lamina, loss of medial smooth muscle cells, reduced proliferation of smooth muscle cells, and loss of fibronectin. Conclusions— Strong localization of aneurysm-type remodeling to the region of accelerating flow suggests that a combination of high wall shear stress and a high gradient in wall shear stress represents a “dangerous” hemodynamic condition that predisposes the apical vessel wall to aneurysm formation.


Pediatric Research | 2006

Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation.

Satyan Lakshminrusimha; James A. Russell; Robin H. Steinhorn; Rita M. Ryan; Sylvia F. Gugino; Frederick C. Morin; Daniel D. Swartz; Vasanth H. Kumar

The optimal Fio2 during neonatal resuscitation is a subject of controversy. The effect of exposure to high levels of inspired oxygen on pulmonary arterial (PA) contractility is not known. We studied differences in PA vasoreactivity in term lambs initially ventilated with 21% or 100% oxygen, followed by continued ventilation using oxygen as needed for 24 h, or ventilated with 100% oxygen for 24 h and room air breathing 1-d-old lambs. Term lambs were delivered by cesarean section, intubated, and ventilated with 21% (21%Res) or 100% oxygen (100%Res) for the first 30 min of life. Subsequently, the ventilator Fio2 was adjusted to maintain a Pao2 between 45 and 65 mm Hg for 24 h. Five lambs were ventilated continuously with 100% oxygen (100%24h). Six spontaneously breathing newborn lambs (RA Spont) were studied for comparison. Lambs were killed at 24 h of life and PA rings were isolated and contracted with norepinephrine (NE) and KCl and some were relaxed with A23187 and SNAP in tissue baths. NE and KCl induced contractions were highest in PA isolated from 100%24h lambs, and were significantly higher in 100%Res lambs than PA from 21%Res lambs. Contraction responses in PA from RA Spont lambs were similar to 21%Res lambs. Relaxations to A23187 and SNAP were similar among all ventilated groups. PA contractility to NE and KCl is increased following both brief (30 min) and prolonged (24 h) exposure to 100% oxygen during mechanical ventilation. In contrast, normoxic resuscitation and ventilation do not increase PA contractility.


Stroke | 2008

Nascent Aneurysm Formation at the Basilar Terminus Induced by Hemodynamics

Ling Gao; Yiemeng Hoi; Daniel D. Swartz; John Kolega; Adnan H. Siddiqui; Hui Meng

Background and Purpose— Hemodynamic insults at arterial bifurcations are hypothesized to play a key role in intracranial aneurysm formation. This study investigates aneurysm-initiating vascular responses at the rabbit basilar terminus subsequent to common carotid artery ligation. Methods— Nine adult female New Zealand white rabbits were subjected to sham, unilateral, or bilateral common carotid artery ligation to produce varying degrees of compensatory basilar artery flow increase. Basilar artery flow velocity and geometry were monitored by transcranial Doppler and rotational angiography, respectively, for 12 weeks after surgery. Bifurcation tissues were harvested at 12 weeks and examined histologically. From the histological sections, we quantified the destructive structural changes at the basilar terminus and correlated them with the basilar artery flow rate increase. Results— Subsequent to common carotid artery ligation, basilar artery flow rate increased by 105% to 900% at the maximum. All common carotid artery-ligated rabbits presented nascent aneurysm formation characterized by a bulge with thinned media and absent internal elastic lamina near the basilar terminus. We defined a nascent aneurysm index based on a multiplicative combination of the local destructive remodeling lengths measured at the nascent aneurysm. The nascent aneurysm index strongly correlated with the increase in basilar artery flow rate with R2=0.91. Conclusion— Without other known predisposition, flow increase alone at the basilar bifurcation can lead to a nascent aneurysm. This nascent aneurysm formation is dose-dependent on basilar artery flow increase.


Tissue Engineering | 2002

Fibrin promotes migration in a three-dimensional in vitro model of wound regeneration

David J. Geer; Daniel D. Swartz; Stelios T. Andreadis

We developed an in vitro model of wound reepithelialization based on engineered composite skin equivalents of human keratinocytes. Such organotypic cultures are unique in that regulatory mechanisms of cell growth and differentiation can be investigated under conditions mimicking those in vivo. We employed this model system to evaluate fibrin as a substrate for keratinocyte growth and migration after incisional wounding. Our results show that fibrin decreases the length of the lag phase of keratinocyte activation and increases the consistency of the healing response. In addition, the response of these skin equivalents to wounding mimicks that of animal models in terms of the kinetics of reepithelialization, the spatiotemporal distribution of proliferating cells in and around the wound, the unique phenotype exhibited by the cells in the newly formed epidermis, the upregulation of key molecular anchors that initiate cell migration, and the formation of basement membrane during wound closure. Our results suggest that this model can be used to study molecular mechanisms of reepithelialization and evaluate biomaterials as vehicles for controlled delivery of genes and proteins to promote wound healing.


American Journal of Pathology | 2005

Biomimetic Delivery of Keratinocyte Growth Factor upon Cellular Demand for Accelerated Wound Healing in Vitro and in Vivo

David J. Geer; Daniel D. Swartz; Stelios T. Andreadis

Exogenous keratinocyte growth factor (KGF) significantly enhances wound healing, but its use is hampered by a short biological half-life and lack of tissue selectivity. We used a biomimetic approach to achieve cell-controlled delivery of KGF by covalently attaching a fluorescent matrix-binding peptide that contained two domains: one recognized by factor XIII and the other by plasmin. Modified KGF was incorporated into the fibrin matrix at high concentration in a factor XIII-dependent manner. Cell-mediated activation of plasminogen to plasmin degraded the fibrin matrix and cleaved the peptides, releasing active KGF to the local microenvironment and enhancing epithelial cell proliferation and migration. To demonstrate in vivo effectiveness, we used a hybrid model of wound healing that involved transplanting human bioengineered skin onto athymic mice. At 6 weeks after grafting, the transplanted tissues underwent full thickness wounding and treatment with fibrin gels containing bound KGF. In contrast to topical KGF, fibrin-bound KGF persisted in the wounds for several days and was released gradually, resulting in significantly enhanced wound closure. A fibrinolytic inhibitor prevented this healing, indicating the requirement for cell-mediated fibrin degradation to release KGF. In conclusion, this biomimetic approach of localized, cell-controlled delivery of growth factors may accelerate healing of large full-thickness wounds and chronic wounds that are notoriously difficult to heal.


Pediatric Research | 2007

Pulmonary hemodynamics in neonatal lambs resuscitated with 21%, 50%, and 100% oxygen.

Satyan Lakshminrusimha; James A. Russell; Robin H. Steinhorn; Daniel D. Swartz; Rita M. Ryan; Sylvia F. Gugino; Karen A. Wynn; Vasanth H. Kumar; Bobby Mathew; Khaver Kirmani; Frederick C. Morin

The effect of resuscitation with varying levels of O2 on pulmonary hemodynamics at birth is not well known. We hypothesized that the decrease in pulmonary vascular resistance (PVR) and subsequent response to pulmonary vasoconstrictors and vasodilators will differ following resuscitation with 21%, 50%, or 100%O2 for 30 min at birth in normal term lambs. Lambs at 141 d gestation were delivered by cesarean section and ventilated with 21% (21% Res; n = 6), 50% (50% Res; n = 6), or 100% O2 (100% Res; n = 7) for 30 min followed by ventilation with 21% O2 in all three groups. A greater decrease in PVR was seen with 50% and 100% O2 ventilation than with 21% O2 (0.21 ± 0.02, 0.21 ± 0.02, and 0.34 ± 0.05 mm Hg/mL/min/kg, respectively). Subsequent pulmonary vasoconstriction to hypoxia (10% O2) and the thromboxane analog U46619 (0.5 and 1 μg/kg/min) was similar in all three groups. After inducing a stable elevation in PVR with U46619, impaired pulmonary vasodilation to inhaled NO (59 ± 4, 65 ± 4, and 74 ± 5% of baseline PVR with 21, 50, and 100%Res, respectively) and acetylcholine infusion (67 ± 8, 75 ± 6, and 87 ± 4% of baseline PVR with 21, 50, and 100%Res, respectively) and rebound pulmonary hypertension following their withdrawal were observed in the 100%Res group. We conclude that, while ventilation with 100% O2 at birth results in a greater initial decrease in PVR, subsequent pulmonary vasodilation to NO/acetylcholine is impaired.


Pediatric Research | 2009

Oxygen Concentration and Pulmonary Hemodynamics in Newborn Lambs with Pulmonary Hypertension

Satyan Lakshminrusimha; Daniel D. Swartz; Sylvia F. Gugino; Changxing Ma; Karen A. Wynn; Rita M. Ryan; James A. Russell; Robin H. Steinhorn

The effect of oxygen concentration on lowering pulmonary vascular resistance (PVR) during resuscitation in a model of persistent pulmonary hypertension of the newborn (PPHN) is not known. PPHN was induced in fetal lambs by ductal ligation 9 d before delivery. After delivery by cesarean section, resuscitation of PPHN lambs with 21%, 50%, or 100% O2 (n = 6 each) for 30 min produced similar decreases in PVR. Lambs were then ventilated with 50% O2 for 60 min and exposed to inhaled nitric oxide (iNO, 20 ppm). Initial resuscitation with 100% O2 significantly impaired the subsequent response to iNO compared with 21% O2 (42 ± 9% vs 22 ± 4% decrease from baseline PVR). Finally, each lamb was randomly and sequentially ventilated with 10%, 21%, 50%, or 100% O2. PVR decreased with increased concentrations of inhaled O2 up to 50%, there being no additional decrease in PVR with 100% O2. When PVR was correlated with Pao2, the maximal change in PVR was achieved at Pao2 values <60 mm Hg. We conclude that resuscitation with 100% O2 does not enhance pulmonary vasodilation compared with 21% and 50% O2, but impairs the subsequent response to iNO in PPHN lambs. Hypoxia increases PVR but hyperoxia does not confer significant additional pulmonary vasodilation in lambs with PPHN.


Neurosurgery | 2009

Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation.

Zhijie Wang; John Kolega; Yiemeng Hoi; Ling Gao; Daniel D. Swartz; Elad I. Levy; J Mocco; Hui Meng

OBJECTIVEAlthough elevated hemodynamics has been speculated to play a key role in intracranial aneurysm (IA) initiation, little is known about the specific hemodynamic microenvironment that triggers aneurysmal vascular degradation. We previously demonstrated maladaptive remodeling characteristic of IA initiation occurring in hemodynamic regions of combined high wall shear stress (WSS) and high WSS gradient near the apex of an experimentally created carotid bifurcation. This study examines whether this remodeling recapitulates the molecular changes found in IAs and whether molecular changes also correspond to specific hemodynamic environments. METHODSDe novo bifurcations were surgically created using both native common carotid arteries in each of 6 dogs. Bifurcations were imaged 2 weeks or 2 months after surgery by high-resolution 3-dimensional angiography, from which flow fields were obtained by computational fluid dynamics simulations. Subsequently, harvested tissues, demonstrating early aneurysmal changes near the apex, were immunostained for interleukin-1β, endothelial and inducible nitric oxide synthases, nitrotyrosine, and matrix metalloproteinase-2 and -9. Spatial distributions of these molecules were comapped with computational fluid dynamics results. RESULTSThe aneurysmal wall showed decreased endothelial nitric oxide synthase expression compared with surrounding segments, the feeding artery, and native controls, whereas all other markers increased. Anti-CD68 staining indicated the absence of inflammatory cells in the aneurysmal wall. Comapping molecular marker distributions with flow fields revealed confinement of these molecular changes within the hemodynamic region of high WSS and high, positive WSS gradient. CONCLUSIONAneurysm-initiating remodeling induced by combined high WSS and high, positive WSS gradient is associated with molecular changes implicated in IAs.


Neurosurgery | 2006

A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo.

Hui Meng; Daniel D. Swartz; Zhijie Wang; Yiemeng Hoi; John Kolega; Eleni Metaxa; Michael P. Szymanski; Junichi Yamamoto; Eric Sauvageau; Elad I. Levy

OBJECTIVECerebral aneurysms are preferentially located at arterial bifurcation apices with complex hemodynamics. To understand disease mechanisms associated with aneurysm initiation, we attempted to establish a causal relationship between local hemodynamics and vascular responses. METHODSArterial bifurcations were surgically created from native common carotid arteries in two dogs, angiographically imaged 2 weeks and 2 months later, and then excised. We characterized local morphological changes in response to specifically manipulated hemodynamics. Computational fluid dynamics simulations were performed on the in vivo images and results mapped onto histological images. RESULTSLocal flow conditions, such as high wall shear stress and high wall shear stress gradient, were found to be associated with vascular changes, including an intimal pad in the flow impingement region and a “groove” bearing the characteristics of an early aneurysm. CONCLUSIONThis novel method of histohemodynamic micromapping reveals a direct correlation between an altered hemodynamic microenvironment and vascular responses consistent with aneurysm development.


Journal of Neurosurgery | 2011

Progressive aneurysm development following hemodynamic insult

Hui Meng; Eleni Metaxa; Ling Gao; Nicholas Liaw; Sabareesh K. Natarajan; Daniel D. Swartz; Adnan H. Siddiqui; John Kolega; J Mocco

OBJECT Hemodynamic insult has been speculated to be a key factor in intracranial aneurysm formation; however, it is unclear whether a sustained insult is necessary. The authors examined whether aneurysmal degradation would continue despite the normalization of wall shear stress (WSS) by adaptive outward vascular remodeling. METHODS Twenty-five rabbits underwent either sham operation (5 animals) or bilateral common carotid artery ligation (20 animals) to augment basilar artery (BA) flow. Basilar termini (BTs) were harvested at 5 days and 3, 12, and 27 weeks postoperation. Histological changes at the BTs were quantified using an aneurysm development score (ADS) wherein the luminal length of the vessel wall exhibiting internal elastic lamina (IEL) loss, media thinning (> 30% media loss), and bulging was multiplied by the percentage of media thinning divided by the BA diameter. This score and its component variables were evaluated over the specified time points and compared with the WSS time course obtained from multiple angiography and BA flow velocity measurements. RESULTS Serial examination of histological sections from the ligation group (17 rabbits survived the procedure) demonstrated localized, progressive, degenerative, and aneurysmal changes at the BTs. Prominent IEL loss was observed in BT specimens from all ligated animals. Media thinning and luminal bulging significantly progressed over the 27-week follow-up. The composite ADS significantly increased over the study period, indicating progressive aneurysm development, although the WSS returned to preligation baseline values within 5 weeks of ligation. CONCLUSIONS Hemodynamic insult can elicit a pathological vascular response leading to a self-sustaining aneurysmal remodeling that does not require persistence of the original inciting factor to continue its pathological progression.

Collaboration


Dive into the Daniel D. Swartz's collaboration.

Top Co-Authors

Avatar

Stelios T. Andreadis

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Russell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita M. Ryan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sindhu Row

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge